Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_271_a8, author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev and O. V. Pochinka}, title = {Global attractor and repeller of {Morse--Smale} diffeomorphisms}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {111--133}, publisher = {mathdoc}, volume = {271}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a8/} }
TY - JOUR AU - V. Z. Grines AU - E. V. Zhuzhoma AU - V. S. Medvedev AU - O. V. Pochinka TI - Global attractor and repeller of Morse--Smale diffeomorphisms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 111 EP - 133 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a8/ LA - ru ID - TM_2010_271_a8 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Zhuzhoma %A V. S. Medvedev %A O. V. Pochinka %T Global attractor and repeller of Morse--Smale diffeomorphisms %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 111-133 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_271_a8/ %G ru %F TM_2010_271_a8
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev; O. V. Pochinka. Global attractor and repeller of Morse--Smale diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 111-133. http://geodesic.mathdoc.fr/item/TM_2010_271_a8/
[1] Abraham R., Smale S., “Nongenericity of $\Omega $-stability”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence (RI), 1970, 5–8 | DOI | MR
[2] Anosov D.V., “Iskhodnye ponyatiya”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178
[3] Anosov D.V., Solodov V.V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy–9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR
[4] Artin E., Fox R.H., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 49 (1948), 979–990 | DOI | MR | Zbl
[5] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6 (2000), 579–602 | DOI | MR | Zbl
[6] Bonatti Kh., Grines V.Z., Medvedev V.C., Peku E., “O topologicheskoi klassifikatsii gradientnopodobnykh diffeomorfizmov bez geteroklinicheskikh krivykh na trekhmernykh mnogoobraziyakh”, DAN, 377:2 (2001), 151–155 | MR | Zbl
[7] Bonatti Kh., Grines V.Z., Medvedev V.C., Peku E., “O diffeomorfizmakh Morsa–Smeila bez geteroklinicheskikh peresechenii na trekhmernykh mnogoobraziyakh”, Tr. MIAN, 236, 2002, 66–78 | MR | Zbl
[8] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43 (2004), 369–391 | DOI | MR | Zbl
[9] Bonatti C., Grines V., Pécou E., “Two-dimensional links and diffeomorphisms on 3-manifolds”, Ergodic Theory and Dyn. Syst., 22:3 (2002), 687–710 | DOI | MR | Zbl
[10] Bonatti Kh., Grines V.Z., Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, DAN, 396:4 (2004), 439–442 | MR | Zbl
[11] Bonatti Kh., Grines V.Z., Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250 (2005), 5–53 | MR | Zbl
[12] Bonatti C., Grines V., Pochinka O., “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, World Sci., Hackensack (NJ), 2006, 121–147 | DOI | MR | Zbl
[13] Cantrell J.C., “$n$-Frames in Euclidean $k$-space”, Proc. Amer. Math. Soc., 15:4 (1964), 574–578 | MR | Zbl
[14] Chernavskii A.V., “O rabotakh L.V. Keldysh i ee seminara”, UMN, 60:4 (2005), 11–36 | DOI | MR | Zbl
[15] Daverman R.J., Venema G.A., Embeddings in manifolds, Grad. Stud. Math., 106, Amer. Math. Soc., Providence (RI), 2009 | MR | Zbl
[16] Debrunner H., Fox R., “A mildly wild imbedding of an $n$-frame”, Duke Math. J., 27 (1960), 425–429 | DOI | MR | Zbl
[17] Edwards R.D., “The solution of the 4-dimensional annulus conjecture (after Frank Quinn)”, Contemp. Math., 35 (1984), 211–264 | DOI | MR | Zbl
[18] Fleitas G., “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6 (1975), 155–183 | DOI | MR | Zbl
[19] Fomenko A.T., Fuks D.B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[20] Franks J.M., “Constructing structurally stable diffeomorphisms”, Ann. Math. Ser. 2, 105 (1977), 343–359 | DOI | MR | Zbl
[21] Freedman M.H., “The topology of four-dimensional manifolds”, J. Diff. Geom., 17 (1982), 357–453 | MR | Zbl
[22] Grines V.Z., Gurevich E.Ya., “O diffeomorfizmakh Morsa–Smeila na mnogoobraziyakh razmernosti bolshe trekh”, DAN, 416:1 (2007), 15–17 | MR | Zbl
[23] Grines V.Z., Gurevich E.Ya., Medvedev V.S., “Graf Peikshoto diffeomorfizmov Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Tr. MIAN, 261 (2008), 61–86 | MR | Zbl
[24] Grines V., Laudenbach F., Pochinka O., “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Moscow Math. J., 9:4 (2009), 801–821 | MR | Zbl
[25] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya potokov i diffeomorfizmov Morsa–Smeila”, DAN, 382:6 (2002), 730–733 | MR | Zbl
[26] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Mat. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl
[27] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Mat. zametki, 74:3 (2003), 369–386 | DOI | MR | Zbl
[28] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR
[29] Gurevich V., Volmen G., Teoriya razmernosti, Izd-vo inostr. lit., M., 1948
[30] Keldysh L.V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966
[31] Kirby R.C., “Stable homeomorphisms and the annulus conjecture”, Ann. Math. Ser. 2, 89 (1969), 575–582 | DOI | MR | Zbl
[32] Kirby R.C., Siebenmann L.C., “On the triangulation of manifolds and the Hauptvermutung”, Bull. Amer. Math. Soc., 75 (1969), 742–749 | DOI | MR | Zbl
[33] Kruglov E.V., Talanova E.A., “O realizatsii diffeomorfizmov Morsa–Smeila s geteroklinicheskimi krivymi na trekhmernoi sfere”, Tr. MIAN, 236, 2002, 212–217 | MR | Zbl
[34] Medvedev V.S., Umanskii Ya.L., “Regulyarnye komponenty gomeomorfizmov na $n$-mernykh mnogoobraziyakh”, Izv. AN SSSR. Cer. mat., 38:6 (1974), 1324–1342 | MR | Zbl
[35] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[36] Newhouse S.E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl
[37] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl
[38] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR
[39] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Mir, M., 1986 | MR
[40] Palis J., Smale S., “Structural stability theorems”, Global analysis, Amer. Math. Soc., Providence (RI), 1970, 223–231 ; Пали Дж., Смейл С., “Теоремы структурной устойчивости”, Математика, 13, No 2, 1969, 145–155 | DOI | MR
[41] Perelman G., The entropy formula for the Ricci flow and its geometric applications, E-print, 2002, arXiv: math/0211159v1 | Zbl
[42] Perelman G., Ricci flow with surgery on three-manifolds, E-print, 2003, arXiv: math/0303109v1
[43] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl
[44] Quinn F., “The embedding theorem for towers”, Contemp. Math., 35 (1984), 461–471 | DOI | MR | Zbl
[45] Robinson C., Dynamical systems: Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton (FL), 1999 | MR | Zbl
[46] Rokhlin V.A., Fuks D.B., Nachalnyi kurs topologii: Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl
[47] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 14 (1975), 109–132 | DOI | MR | Zbl
[48] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[49] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl
[50] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 ; Смейл С., “Дифференцируемые динамические системы”, УМН, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR
[51] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR
[52] Stallings J.R., “Polyhedral homotopy-spheres”, Bull. Amer. Math. Soc., 66 (1960), 485–488 | DOI | MR | Zbl
[53] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001
[54] Zeeman E.C., “The generalised Poincaré conjecture”, Bull. Amer. Math. Soc., 67 (1961), 270 | DOI | MR | Zbl
[55] Zhuzhoma E.V., Medvedev V.C., “Globalnaya dinamika sistem Morsa–Smeila”, Tr. MIAN, 261, 2008, 115–139 | MR | Zbl