Global attractor and repeller of Morse--Smale diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 111-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be an orientation-preserving Morse–Smale diffeomorphism of an $n$-dimensional ($n\ge3$) closed orientable manifold $M^n$. We show the possibility of representing the dynamics of $f$ in a “source–sink” form. The roles of the “source” and “sink” are played by invariant closed sets one of which, $A_f$, is an attractor, and the other, $R_f$, is a repeller. Such a representation reveals new topological invariants that describe the embedding (possibly, wild) of stable and unstable manifolds of saddle periodic points in the ambient manifold. These invariants have allowed us to obtain a classification of substantial classes of Morse–Smale diffeomorphisms on 3-manifolds. In this paper, for any $n\ge3$, we describe the topological structure of the sets $A_f$ and $R_f$ and of the space of orbits that belong to the set $M^n\setminus(A_f\cup R_f)$.
@article{TM_2010_271_a8,
     author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev and O. V. Pochinka},
     title = {Global attractor and repeller of {Morse--Smale} diffeomorphisms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {111--133},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a8/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
AU  - O. V. Pochinka
TI  - Global attractor and repeller of Morse--Smale diffeomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 111
EP  - 133
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a8/
LA  - ru
ID  - TM_2010_271_a8
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A V. S. Medvedev
%A O. V. Pochinka
%T Global attractor and repeller of Morse--Smale diffeomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 111-133
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a8/
%G ru
%F TM_2010_271_a8
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev; O. V. Pochinka. Global attractor and repeller of Morse--Smale diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 111-133. http://geodesic.mathdoc.fr/item/TM_2010_271_a8/

[1] Abraham R., Smale S., “Nongenericity of $\Omega $-stability”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence (RI), 1970, 5–8 | DOI | MR

[2] Anosov D.V., “Iskhodnye ponyatiya”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178

[3] Anosov D.V., Solodov V.V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy–9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR

[4] Artin E., Fox R.H., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 49 (1948), 979–990 | DOI | MR | Zbl

[5] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6 (2000), 579–602 | DOI | MR | Zbl

[6] Bonatti Kh., Grines V.Z., Medvedev V.C., Peku E., “O topologicheskoi klassifikatsii gradientnopodobnykh diffeomorfizmov bez geteroklinicheskikh krivykh na trekhmernykh mnogoobraziyakh”, DAN, 377:2 (2001), 151–155 | MR | Zbl

[7] Bonatti Kh., Grines V.Z., Medvedev V.C., Peku E., “O diffeomorfizmakh Morsa–Smeila bez geteroklinicheskikh peresechenii na trekhmernykh mnogoobraziyakh”, Tr. MIAN, 236, 2002, 66–78 | MR | Zbl

[8] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43 (2004), 369–391 | DOI | MR | Zbl

[9] Bonatti C., Grines V., Pécou E., “Two-dimensional links and diffeomorphisms on 3-manifolds”, Ergodic Theory and Dyn. Syst., 22:3 (2002), 687–710 | DOI | MR | Zbl

[10] Bonatti Kh., Grines V.Z., Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, DAN, 396:4 (2004), 439–442 | MR | Zbl

[11] Bonatti Kh., Grines V.Z., Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250 (2005), 5–53 | MR | Zbl

[12] Bonatti C., Grines V., Pochinka O., “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, World Sci., Hackensack (NJ), 2006, 121–147 | DOI | MR | Zbl

[13] Cantrell J.C., “$n$-Frames in Euclidean $k$-space”, Proc. Amer. Math. Soc., 15:4 (1964), 574–578 | MR | Zbl

[14] Chernavskii A.V., “O rabotakh L.V. Keldysh i ee seminara”, UMN, 60:4 (2005), 11–36 | DOI | MR | Zbl

[15] Daverman R.J., Venema G.A., Embeddings in manifolds, Grad. Stud. Math., 106, Amer. Math. Soc., Providence (RI), 2009 | MR | Zbl

[16] Debrunner H., Fox R., “A mildly wild imbedding of an $n$-frame”, Duke Math. J., 27 (1960), 425–429 | DOI | MR | Zbl

[17] Edwards R.D., “The solution of the 4-dimensional annulus conjecture (after Frank Quinn)”, Contemp. Math., 35 (1984), 211–264 | DOI | MR | Zbl

[18] Fleitas G., “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6 (1975), 155–183 | DOI | MR | Zbl

[19] Fomenko A.T., Fuks D.B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[20] Franks J.M., “Constructing structurally stable diffeomorphisms”, Ann. Math. Ser. 2, 105 (1977), 343–359 | DOI | MR | Zbl

[21] Freedman M.H., “The topology of four-dimensional manifolds”, J. Diff. Geom., 17 (1982), 357–453 | MR | Zbl

[22] Grines V.Z., Gurevich E.Ya., “O diffeomorfizmakh Morsa–Smeila na mnogoobraziyakh razmernosti bolshe trekh”, DAN, 416:1 (2007), 15–17 | MR | Zbl

[23] Grines V.Z., Gurevich E.Ya., Medvedev V.S., “Graf Peikshoto diffeomorfizmov Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Tr. MIAN, 261 (2008), 61–86 | MR | Zbl

[24] Grines V., Laudenbach F., Pochinka O., “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Moscow Math. J., 9:4 (2009), 801–821 | MR | Zbl

[25] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya potokov i diffeomorfizmov Morsa–Smeila”, DAN, 382:6 (2002), 730–733 | MR | Zbl

[26] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Mat. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl

[27] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Mat. zametki, 74:3 (2003), 369–386 | DOI | MR | Zbl

[28] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR

[29] Gurevich V., Volmen G., Teoriya razmernosti, Izd-vo inostr. lit., M., 1948

[30] Keldysh L.V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966

[31] Kirby R.C., “Stable homeomorphisms and the annulus conjecture”, Ann. Math. Ser. 2, 89 (1969), 575–582 | DOI | MR | Zbl

[32] Kirby R.C., Siebenmann L.C., “On the triangulation of manifolds and the Hauptvermutung”, Bull. Amer. Math. Soc., 75 (1969), 742–749 | DOI | MR | Zbl

[33] Kruglov E.V., Talanova E.A., “O realizatsii diffeomorfizmov Morsa–Smeila s geteroklinicheskimi krivymi na trekhmernoi sfere”, Tr. MIAN, 236, 2002, 212–217 | MR | Zbl

[34] Medvedev V.S., Umanskii Ya.L., “Regulyarnye komponenty gomeomorfizmov na $n$-mernykh mnogoobraziyakh”, Izv. AN SSSR. Cer. mat., 38:6 (1974), 1324–1342 | MR | Zbl

[35] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[36] Newhouse S.E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl

[37] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl

[38] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR

[39] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Mir, M., 1986 | MR

[40] Palis J., Smale S., “Structural stability theorems”, Global analysis, Amer. Math. Soc., Providence (RI), 1970, 223–231 ; Пали Дж., Смейл С., “Теоремы структурной устойчивости”, Математика, 13, No 2, 1969, 145–155 | DOI | MR

[41] Perelman G., The entropy formula for the Ricci flow and its geometric applications, E-print, 2002, arXiv: math/0211159v1 | Zbl

[42] Perelman G., Ricci flow with surgery on three-manifolds, E-print, 2003, arXiv: math/0303109v1

[43] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl

[44] Quinn F., “The embedding theorem for towers”, Contemp. Math., 35 (1984), 461–471 | DOI | MR | Zbl

[45] Robinson C., Dynamical systems: Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton (FL), 1999 | MR | Zbl

[46] Rokhlin V.A., Fuks D.B., Nachalnyi kurs topologii: Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl

[47] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 14 (1975), 109–132 | DOI | MR | Zbl

[48] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[49] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl

[50] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 ; Смейл С., “Дифференцируемые динамические системы”, УМН, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR

[51] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[52] Stallings J.R., “Polyhedral homotopy-spheres”, Bull. Amer. Math. Soc., 66 (1960), 485–488 | DOI | MR | Zbl

[53] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001

[54] Zeeman E.C., “The generalised Poincaré conjecture”, Bull. Amer. Math. Soc., 67 (1961), 270 | DOI | MR | Zbl

[55] Zhuzhoma E.V., Medvedev V.C., “Globalnaya dinamika sistem Morsa–Smeila”, Tr. MIAN, 261, 2008, 115–139 | MR | Zbl