Optimal synthesis in an infinite-dimensional space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 40-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of optimal control problems and Hamiltonian systems generated by these problems in the space $l_2$, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space $l_2$ forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.
@article{TM_2010_271_a4,
     author = {V. F. Borisov and M. I. Zelikin and L. A. Manita},
     title = {Optimal synthesis in an infinite-dimensional space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {40--58},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a4/}
}
TY  - JOUR
AU  - V. F. Borisov
AU  - M. I. Zelikin
AU  - L. A. Manita
TI  - Optimal synthesis in an infinite-dimensional space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 40
EP  - 58
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a4/
LA  - ru
ID  - TM_2010_271_a4
ER  - 
%0 Journal Article
%A V. F. Borisov
%A M. I. Zelikin
%A L. A. Manita
%T Optimal synthesis in an infinite-dimensional space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 40-58
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a4/
%G ru
%F TM_2010_271_a4
V. F. Borisov; M. I. Zelikin; L. A. Manita. Optimal synthesis in an infinite-dimensional space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 40-58. http://geodesic.mathdoc.fr/item/TM_2010_271_a4/

[1] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl

[2] Zelikin M.I., Borisov V.F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR | Zbl

[3] Krein S.G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[5] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[6] Zelikin M.I., Manita L.A., “Nakoplenie pereklyuchenii upravleniya v zadachakh s raspredelennymi parametrami”, Sovr. matematika. Fund. napr., 19 (2006), 78–113 | MR

[7] Alfutov N.A., Osnovy rascheta na ustoichivost uprugikh sistem, Mashinostroenie, M., 1991

[8] Zelikin M.I., Manita L.A., “Optimalnye rezhimy s uchaschayuschimisya pereklyucheniyami v zadache upravleniya balkoi Timoshenko”, PMM, 70:2 (2006), 295–304 | MR | Zbl

[9] Timoshenko S.P., Kurs teorii uprugosti, Nauk. dumka, Kiev, 1972

[10] Gugat M., “Controllability of a slowly rotating Timoshenko beam”, ESAIM: Control Optim. and Calc. Var., 6 (2001), 333–360 | DOI | MR | Zbl

[11] Taylor S.W., Yau S.C.B., “Boundary control of a rotating Timoshenko beam”, ANZIAM J., 44, Electron. Suppl. (2003), E143–E184.

[12] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[13] Aronszajn N., Weinstein A., “On the unified theory of eigenvalues of plates and membranes”, Amer. J. Math., 64 (1942), 623–645 | DOI | MR | Zbl