Optimal synthesis in an infinite-dimensional space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 40-58
Voir la notice de l'article provenant de la source Math-Net.Ru
For a class of optimal control problems and Hamiltonian systems generated by these problems in the space $l_2$, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space $l_2$ forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.
@article{TM_2010_271_a4,
author = {V. F. Borisov and M. I. Zelikin and L. A. Manita},
title = {Optimal synthesis in an infinite-dimensional space},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {40--58},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a4/}
}
TY - JOUR AU - V. F. Borisov AU - M. I. Zelikin AU - L. A. Manita TI - Optimal synthesis in an infinite-dimensional space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 40 EP - 58 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a4/ LA - ru ID - TM_2010_271_a4 ER -
V. F. Borisov; M. I. Zelikin; L. A. Manita. Optimal synthesis in an infinite-dimensional space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 40-58. http://geodesic.mathdoc.fr/item/TM_2010_271_a4/