Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_271_a18, author = {A. M. Tarasyev and A. A. Usova}, title = {Construction of a~regulator for the {Hamiltonian} system in a~two-sector economic growth model}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {278--298}, publisher = {mathdoc}, volume = {271}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a18/} }
TY - JOUR AU - A. M. Tarasyev AU - A. A. Usova TI - Construction of a~regulator for the Hamiltonian system in a~two-sector economic growth model JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 278 EP - 298 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a18/ LA - ru ID - TM_2010_271_a18 ER -
%0 Journal Article %A A. M. Tarasyev %A A. A. Usova %T Construction of a~regulator for the Hamiltonian system in a~two-sector economic growth model %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 278-298 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_271_a18/ %G ru %F TM_2010_271_a18
A. M. Tarasyev; A. A. Usova. Construction of a~regulator for the Hamiltonian system in a~two-sector economic growth model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 278-298. http://geodesic.mathdoc.fr/item/TM_2010_271_a18/
[1] Aseev S.M., Kryazhimskii A.V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR
[2] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Airis-press, M., 2002
[3] Krasovskii A.A., Tarasev A.M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | MR | Zbl
[4] Arrow K.J., “Applications of control theory to economic growth”, Mathematics of the decision sciences, Part 2, Amer. Math. Soc., Providence (RI), 1968, 85–119 | MR
[5] Ayres R.U., Warr B., The economic growth engine: How energy and work drive material prosperity, Edward Elgar Publ., Cheltenham, 2009
[6] Balder E.J., “An existence result for optimal economic growth problems”, J. Math. Anal. and Appl., 95 (1983), 195–213 | DOI | MR | Zbl
[7] Grossman G.M., Helpman E., Innovation and growth in the global economy, MIT Press, Cambridge (MA), 1993
[8] Hartman P., Ordinary differential equations, J. Wiley and Sons, New York, 1964 | MR | Zbl
[9] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl
[10] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl
[11] Rockafellar R.T., “Hamilton–Jacobi theory and parametric analysis in fully convex problems of optimal control”, J. Global Optim., 28 (2004), 419–431 | DOI | MR | Zbl
[12] Sanderson W., The SEDIM model: Version 0.1, IIASA Interim Rep. IR-04-041, Laxenburg (Austria), 2004
[13] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, v. 1, Springer, Berlin, 1969, 241–292 | DOI | MR
[14] Solow R.M., Growth theory: An exposition, Oxford Univ. Press, New York, 1970