Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_271_a17, author = {N. N. Subbotina and T. B. Tokmantsev}, title = {Classical characteristics of the {Bellman} equation in constructions of grid optimal synthesis}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {259--277}, publisher = {mathdoc}, volume = {271}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a17/} }
TY - JOUR AU - N. N. Subbotina AU - T. B. Tokmantsev TI - Classical characteristics of the Bellman equation in constructions of grid optimal synthesis JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 259 EP - 277 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a17/ LA - ru ID - TM_2010_271_a17 ER -
%0 Journal Article %A N. N. Subbotina %A T. B. Tokmantsev %T Classical characteristics of the Bellman equation in constructions of grid optimal synthesis %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 259-277 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_271_a17/ %G ru %F TM_2010_271_a17
N. N. Subbotina; T. B. Tokmantsev. Classical characteristics of the Bellman equation in constructions of grid optimal synthesis. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 259-277. http://geodesic.mathdoc.fr/item/TM_2010_271_a17/
[1] Vasilev F.P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR
[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[3] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd.-vo Tbil. un-ta, Tbilisi, 1975 | MR
[4] Grin D., Knut D., Matematicheskie metody analiza algoritmov, Mir, M., 1987 | MR
[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[6] Moiseev N.N., Chislennye metody v teorii optimalnykh sistem, Nauka, M., 1971 | MR
[7] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[8] Subbotina N.N., Tokmantsev T.B., “Optimalnyi sintez v zadache upravleniya s lipshitsevymi vkhodnymi dannymi”, Tr. MIAN, 262, 2008, 240–252 | MR | Zbl
[9] Subbotina N.N., Tokmantsev T.B., “Ob effektivnosti setochnogo optimalnogo sinteza v zadachakh optimalnogo upravleniya s fiksirovannym momentom okonchaniya”, Dif. uravneniya, 45:11 (2009), 1651–1662 | MR | Zbl
[10] Tarasev A.M., Uspenskii A.A., Ushakov V.N., “Approksimatsionnye skhemy i konechno-raznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR | Zbl
[11] Albrekht E.G., “Metodika postroeniya i identifikatsii matematicheskikh modelei makroekonomicheskikh protsessov”, Issledovano v Rossii: Elektron. zhurn., 2002, Statya 5, 54–86 http://zhurnal.ape.relarn.ru/articles/2002/005.pdf
[12] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton (NJ), 1957 | MR | Zbl
[13] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl
[14] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[15] Souganidis P.E., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Diff. Equat., 59 (1985), 1–43 | DOI | MR | Zbl
[16] Subbotin A.I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995 | MR
[17] Subbotina N.N., Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii, Sovr. matematika i ee pril., 20, In-t kibernetiki AN Gruzii, Tbilisi, 2004
[18] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer, Berlin, 1998 | MR | Zbl