Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 259-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider optimal control problems with fixed final time and terminal–integral cost functional, and address the question of constructing a grid optimal synthesis (a universal feedback) on the basis of classical characteristics of the Bellman equation. To construct an optimal synthesis, we propose a numerical algorithm that relies on the necessary optimality conditions (the Pontryagin maximum principle) and sufficient conditions in the Hamiltonian form. We obtain estimates for the efficiency of the numerical method. The method is illustrated by an example of the numerical solution of a nonlinear optimal control problem.
@article{TM_2010_271_a17,
     author = {N. N. Subbotina and T. B. Tokmantsev},
     title = {Classical characteristics of the {Bellman} equation in constructions of grid optimal synthesis},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {259--277},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a17/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - T. B. Tokmantsev
TI  - Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 259
EP  - 277
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a17/
LA  - ru
ID  - TM_2010_271_a17
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A T. B. Tokmantsev
%T Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 259-277
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a17/
%G ru
%F TM_2010_271_a17
N. N. Subbotina; T. B. Tokmantsev. Classical characteristics of the Bellman equation in constructions of grid optimal synthesis. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 259-277. http://geodesic.mathdoc.fr/item/TM_2010_271_a17/

[1] Vasilev F.P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[3] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd.-vo Tbil. un-ta, Tbilisi, 1975 | MR

[4] Grin D., Knut D., Matematicheskie metody analiza algoritmov, Mir, M., 1987 | MR

[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[6] Moiseev N.N., Chislennye metody v teorii optimalnykh sistem, Nauka, M., 1971 | MR

[7] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[8] Subbotina N.N., Tokmantsev T.B., “Optimalnyi sintez v zadache upravleniya s lipshitsevymi vkhodnymi dannymi”, Tr. MIAN, 262, 2008, 240–252 | MR | Zbl

[9] Subbotina N.N., Tokmantsev T.B., “Ob effektivnosti setochnogo optimalnogo sinteza v zadachakh optimalnogo upravleniya s fiksirovannym momentom okonchaniya”, Dif. uravneniya, 45:11 (2009), 1651–1662 | MR | Zbl

[10] Tarasev A.M., Uspenskii A.A., Ushakov V.N., “Approksimatsionnye skhemy i konechno-raznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR | Zbl

[11] Albrekht E.G., “Metodika postroeniya i identifikatsii matematicheskikh modelei makroekonomicheskikh protsessov”, Issledovano v Rossii: Elektron. zhurn., 2002, Statya 5, 54–86 http://zhurnal.ape.relarn.ru/articles/2002/005.pdf

[12] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton (NJ), 1957 | MR | Zbl

[13] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl

[14] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[15] Souganidis P.E., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Diff. Equat., 59 (1985), 1–43 | DOI | MR | Zbl

[16] Subbotin A.I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston, 1995 | MR

[17] Subbotina N.N., Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii, Sovr. matematika i ee pril., 20, In-t kibernetiki AN Gruzii, Tbilisi, 2004

[18] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer, Berlin, 1998 | MR | Zbl