Duality between compactness and discreteness beyond Pontryagin duality
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 224-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the most striking results of Pontryagin's duality theory is the duality between compact and discrete locally compact abelian groups. This duality also persists in part for objects associated with noncommutative topological groups. In particular, it is well known that the dual space of a compact topological group is discrete, while the dual space of a discrete group is quasicompact (i.e., it satisfies the finite covering theorem but is not necessarily Hausdorff). The converse of the former assertion is also true, whereas the converse of the latter is not (there are simple examples of nondiscrete locally compact solvable groups of height $2$ whose dual spaces are quasicompact and non-Hausdorff (they are $T_1$ spaces)). However, in the class of locally compact groups all of whose irreducible unitary representations are finite-dimensional, a group is discrete if and only if its dual space is quasicompact (and is automatically a $T_1$ space). The proof is based on the structural theorem for locally compact groups all of whose irreducible unitary representations are finite-dimensional. Certain duality between compactness and discreteness can also be revealed in groups that are not necessarily locally compact but are unitarily, or at least reflexively, representable, provided that (in the simplest case) the irreducible representations of a group form a sufficiently large family and have jointly bounded dimensions. The corresponding analogs of compactness and discreteness cannot always be easily identified, but they are still duals of each other to some extent.
@article{TM_2010_271_a15,
     author = {A. I. Shtern},
     title = {Duality between compactness and discreteness beyond {Pontryagin} duality},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--240},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a15/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Duality between compactness and discreteness beyond Pontryagin duality
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 224
EP  - 240
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a15/
LA  - ru
ID  - TM_2010_271_a15
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Duality between compactness and discreteness beyond Pontryagin duality
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 224-240
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a15/
%G ru
%F TM_2010_271_a15
A. I. Shtern. Duality between compactness and discreteness beyond Pontryagin duality. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 224-240. http://geodesic.mathdoc.fr/item/TM_2010_271_a15/

[1] Amitsur S.A., “Groups with representations of bounded degree. II”, Ill. J. Math., 5 (1961), 198–205 | MR | Zbl

[2] Antonyan S., Sanchis M., “Extension of locally pseudocompact group actions”, Ann. Mat. Pura ed Appl. Ser. 4, 181 (2002), 239–246 | DOI | MR | Zbl

[3] Arhangel'skii A.V., “On a theorem of W.W. Comfort and K.A. Ross”, Comment. Math. Univ. Carol., 40:1 (1999), 133–151 | MR

[4] Arsac G., “Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire”, Publ. Dép. Math. Lyon, 13:2 (1976), 1–101 | MR | Zbl

[5] Banaszczyk W., “On the existence of exotic Banach–Lie groups”, Math. Ann., 264:4 (1983), 485–493 | DOI | MR | Zbl

[6] Banaszczyk W., Additive subgroups of topological vector spaces, Lect. Notes Math., 1466, Springer, Berlin, 1991 | MR | Zbl

[7] Bélanger A., Forrest B.E., “Geometric properties of some subspaces of $VN(G)$”, Proc. Amer. Math. Soc., 122:1 (1994), 131–133 | MR | Zbl

[8] Bélanger A., Forrest B.E., “Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group”, J. Math. Anal. and Appl., 193:2 (1995), 390–405 | DOI | MR | Zbl

[9] Bunce L.J., “The Dunford–Pettis property in the predual of a von Neumann algebra”, Proc. Amer. Math. Soc., 116:1 (1992), 99–100 | DOI | MR | Zbl

[10] Chu C.-H., “A note on scattered $C^*$-algebras and the Radon–Nikodym property”, J. London Math. Soc. Ser. 2, 24:3 (1981), 533–536 | DOI | MR | Zbl

[11] Chu C.-H., Iochum B., Watanabe S., “$C^*$-algebras with the Dunford–Pettis property”, Function spaces, Proc. Conf. (Edwardsville, IL, 1990), Lect. Notes Pure and Appl. Math., 136, M. Dekker, New York, 1992, 67–70 | MR

[12] Chu H., “Compactification and duality of topological groups”, Trans. Amer. Math. Soc., 123:2 (1966), 310–324 | DOI | MR | Zbl

[13] Comfort W.W., Soundararajan T., Trigos-Arrieta F.J., “Determining a weakly locally compact group topology by its system of closed subgroups”, Papers in general topology and applications, Ann. New York Acad. Sci., 728, eds. Ed. by S. Andina et al., New York Acad. Sci., New York, 1994, 248–261 | DOI | MR | Zbl

[14] Comfort W.W., Trigos-Arrieta F.J., “Locally pseudocompact topological groups”, Topol. and Appl., 62:3 (1995), 263–280 | DOI | MR | Zbl

[15] Davis W.J., Figiel T., Johnson W.B., Pełczyński A., “Factoring weakly compact operators”, J. Funct. Anal., 17 (1974), 311–327 | DOI | MR | Zbl

[16] Day M.M., Normed linear spaces, Springer, New York, 1973 | MR | Zbl

[17] Dikranjan D., Shakhmatov D., Algebraic structure of pseudocompact groups, Mem. Amer. Math. Soc., no. 633, Amer. Math. Soc., Providence (RI), 1998 | MR | Zbl

[18] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[19] Danford N., Shvarts Dzh., Lineinye operatory: Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[20] Edvards P., Funktsionalnyi analiz: Teoriya i prilozheniya, Mir, M., 1969

[21] Effros E.G., Ruan Z.-J., “Operator space tensor products and Hopf convolution algebras”, J. Oper. Theory., 50:1 (2003), 131–156 | MR | Zbl

[22] Ellis R., “Locally compact transformation groups”, Duke Math. J., 24 (1957), 119–125 | DOI | MR | Zbl

[23] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[24] Enock M., Schwartz J.-M., Kac algebras and duality of locally compact groups, Springer, Berlin, 1992 | MR | Zbl

[25] Ernest J., “A new group algebra for locally compact groups”, Amer. J. Math., 86 (1964), 467–492 | DOI | MR | Zbl

[26] Ernest J., “A new group algebra for locally compact groups. II”, Canad. J. Math., 17 (1965), 604–615 | DOI | MR | Zbl

[27] Ernest J., “Hopf–von Neumann algebras”, Functional analysis, Proc. Conf. (Univ. Calif., Irvine, 1966), Acad. Press, London, 1967, 195–215 | MR

[28] Eymard P., “L'algèbre de Fourier d'un groupe localement compact”, Bull. Soc. math. France, 92 (1964), 181–236 | MR | Zbl

[29] Fell J.M.G., “Weak containment and induced representations of groups”, Canad. J. Math., 14 (1962), 237–268 | DOI | MR | Zbl

[30] Fell J.M.G., “Weak containment and induced representations of groups. II”, Trans. Amer. Math. Soc., 110 (1964), 424–447 | MR | Zbl

[31] Freedman W., Ülger A., “The Phillips properties”, Proc. Amer. Math. Soc., 128:7 (2000), 2137–2145 | DOI | MR | Zbl

[32] Freudenthal H., “Topologische Gruppen mit genügend vielen fastperiodischen Funktionen”, Ann. Math. Ser. 2, 37 (1936), 57–77 | DOI | MR | Zbl

[33] Gaal S.A., Linear analysis and representation theory, Springer, New York, 1973 | MR | Zbl

[34] Galindo J., Hernández S., Wu T.-S., “Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups”, Open problems in topology. II, eds. Ed. by E. Pearl, Elsevier, Amsterdam, 2007, 407–422 | DOI

[35] Gelfand I.M., Raikov D.A., “Neprivodimye unitarnye predstavleniya lokalno bikompaktnykh grupp”, Mat. sb., 13 (1943), 301–316 | MR | Zbl

[36] Glicksberg I., “Uniform boundedness for groups”, Canad. J. Math., 14 (1962), 269–276 | DOI | MR | Zbl

[37] Glöckner H., Neeb K.-H., “Minimally almost periodic abelian groups and commutative $W^*$-algebras”, Nuclear groups and Lie groups (Madrid, 1999), Res. and Expo. Math., 24, Heldermann, Lemgo, 2001, 163–185 | MR | Zbl

[38] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[39] Grosser S., Mosak R., Moskowitz M., “Duality and harmonic analysis on central topological groups. I”, Nederl. Akad. Wet. Proc. A, 76 (1973), 65–77 | MR | Zbl

[40] Grosser S., Mosak R., Moskowitz M., “Duality and harmonic analysis on central topological groups. II”, Nederl. Akad. Wet. Proc. A, 76 (1973), 78–91 | MR | Zbl

[41] Grosser S., Mosak R., Moskowitz M., “Correction to: Duality and harmonic analysis on central topological groups”, Nederl. Akad. Wet. Proc. A, 76 (1973), 375 | MR | Zbl

[42] Grove K., Karcher H., Ruh E.A., “Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems”, Math. Ann., 211:1 (1974), 7–21 | DOI | MR | Zbl

[43] de la Harpe P., Karoubi M., “Représentations approchées d'un groupe dans une algèbre de Banach”, Manuscr. math., 22:3 (1977), 293–310 | DOI | MR | Zbl

[44] Herer W., Christensen J.P.R., “On the existence of pathological submeasures and the construction of exotic topological groups”, Math. Ann., 213 (1975), 203–210 | DOI | MR | Zbl

[45] Hernández S., Macario S., “Invariance of compactness for the Bohr topology”, Topol. and Appl., 111:1–2 (2001), 161–173 | DOI | MR | Zbl

[46] Hernández S., Wu T.-S., “Some new results on the Chu duality of discrete groups”, Monatsh. Math., 149:3 (2006), 215–232 | DOI | MR | Zbl

[47] Hewitt E., Ross K.A., Abstract harmonic analysis, v. 1, Springer, Berlin; New York, 1979 | MR | Zbl

[48] Heyer H., Dualität lokalkompakter Gruppen, Lect. Notes Math., 150, Springer, Berlin, 1970 | MR

[49] Heyer H., “Groups with Chu duality”, Probability and information theory. II, 296, no. Lect. Notes Math., Springer, Berlin, 1973 | MR

[50] Howe R.M., Ton-That T., “Multiplicity, invariants and tensor product decompositions of tame representations of $\mathrm U(\infty )$”, J. Math. Phys., 41:2 (2000), 991–1015 | DOI | MR | Zbl

[51] Iório V. de Magalhães., “Hopf-$C^*$-algebras and locally compact groups”, Pacif. J. Math., 87:1 (1980), 75–96 | DOI | MR | Zbl

[52] Isaacs I.M., Passman D.S., “Groups with representations of bounded degree”, Canad. J. Math., 16 (1964), 299–309 | DOI | MR | Zbl

[53] Johnson B.E., “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc. Ser. 2, 37:2 (1988), 294–316 | DOI | MR | Zbl

[54] Joyal A., Street R., “An introduction to Tannaka duality and quantum groups”, Category theory (Como, 1990), 1488, no. Lect. Notes Math., Springer, Berlin, 1991, 413–492 | DOI | MR

[55] Kats G.I., “Obobschenie gruppovogo printsipa dvoistvennosti”, DAN SSSR, 138 (1961), 275–278

[56] Kats G.I., “Kompaktnye i diskretnye koltsevye gruppy”, Ukr. mat. zhurn., 14 (1962), 260–270

[57] Kahng B.-J., “Haar measure on a locally compact quantum group”, J. Ramanujan Math. Soc., 18:4 (2003), 385–414 | MR | Zbl

[58] Kaplansky I., “Groups with representations of bounded degree”, Canad. J. Math., 1 (1949), 105–112 | DOI | MR | Zbl

[59] Kazhdan D., “On $\varepsilon $-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl

[60] Kirillov A.A., “Predstavleniya beskonechnomernoi unitarnoi gruppy”, DAN SSSR, 212 (1973), 288–290 | MR | Zbl

[61] Krein M.G., “Printsip dvoistvennosti dlya bikompaktnoi gruppy i kvadratnoi blok-algebry”, DAN SSSR, 69 (1949), 725–728 | MR

[62] Kustermans J., “Locally compact quantum groups”, Quantum independent increment processes. I: From classical probability to quantum stochastic calculus, Lect. Notes Math., 1865, Springer, Berlin, 2005 | MR | Zbl

[63] Kustermans J., Vaes S., “Locally compact quantum groups”, Ann. Sci. École Norm. Supér. Sér. 4, 33:6 (2000), 837–934 | MR | Zbl

[64] Kustermans J., Vaes S., “Locally compact quantum groups in the von Neumann algebraic setting”, Math. scand., 92:1 (2003), 68–92 | MR | Zbl

[65] Lau A.T.-M., Ülger A., “Some geometric properties on the Fourier and Fourier–Stieltjes algebras of locally compact groups, Arens regularity and related problems”, Trans. Amer. Math. Soc., 337:1 (1993), 321–359 | DOI | MR | Zbl

[66] Mackey G.W., “Infinite-dimensional group representations”, Bull. Amer. Math. Soc., 69 (1963), 628–686 | DOI | MR | Zbl

[67] Masuda T., Nakagami Y., “A von Neumann algebra framework for the duality of the quantum groups”, Publ. Res. Inst. Math. Sci., 30:5 (1994), 799–850 | DOI | MR | Zbl

[68] Maynard H.B., “A geometrical characterization of Banach spaces with the Radon–Nikodym property”, Trans. Amer. Math. Soc., 185 (1973), 493–500 | DOI | MR

[69] Moore C.C., “Groups with finite dimensional irreducible representations”, Trans. Amer. Math. Soc., 166 (1972), 401–410 | DOI | MR | Zbl

[70] Naimark M.A., Štern A.I., Theory of group representations, Springer, New York, 1982 | MR | Zbl

[71] Namioka I., Phelps R.R., “Banach spaces which are Asplund spaces”, Duke Math. J., 42:4 (1975), 735–750 | DOI | MR | Zbl

[72] Ng C.-K., “Cohomology of Hopf $C^*$-algebras and Hopf von Neumann algebras”, Proc. London Math. Soc. Ser. 3, 83:3 (2001), 708–742 | DOI | MR | Zbl

[73] Ordman E.T., Morris S.A., “Almost locally invariant topological groups”, J. London Math. Soc. Ser. 2, 9 (1974), 30–34 | DOI | MR | Zbl

[74] Pahor M., “The structure of certain group $C^*$-algebras”, Bull. Austral. Math. Soc., 47:1 (1993), 169–174 | DOI | MR | Zbl

[75] Palmer T.W., “Classes of nonabelian, noncompact, locally compact groups”, Rocky Mount. J. Math., 8:4 (1978), 683–741 | DOI | MR | Zbl

[76] Passman D.S., The algebraic structure of group rings, J. Wiley Sons, New York, 1977 | MR | Zbl

[77] Passman D.S., Temple W.V., “Groups with all irreducible modules of finite degree”, Algebra, Proc. Intern. Conf. (Moscow, 1998), W. de Gruyter, Berlin, 2000, 263–279 | MR | Zbl

[78] Pontrjagin L.S., “The theory of topological commutative groups”, Ann. Math. Ser. 2, 35:2 (1934), 361–388 | DOI | MR | Zbl

[79] Pontryagin L.S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[80] Raeburn I., “On group $C^*$-algebras of bounded representation dimension”, Trans. Amer. Math. Soc., 272:2 (1982), 629–644 | MR | Zbl

[81] Remus D., Trigos-Arrieta F.J., “The Bohr topology of Moore groups”, Topol. and Appl., 97:1–2 (1999), 85–98 | DOI | MR | Zbl

[82] Robertson L.C., “A note on the structure of Moore groups”, Bull. Amer. Math. Soc., 75 (1969), 594–599 | DOI | MR | Zbl

[83] Rosenberg A.L., “Reconstruction of groups”, Sel. Math. New Ser., 9:1 (2003), 101–118 | DOI | MR | Zbl

[84] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer, Berlin, 1971 | MR | Zbl

[85] Sanchis M., “Continuous functions on locally pseudocompact groups”, Topol. and Appl., 86:1 (1998), 5–23 | DOI | MR | Zbl

[86] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[87] Schlichting G., “Groups with representations of bounded degree”, Probability measures on groups, Proc. Conf. (Oberwolfach, 1978), Lect. Notes Math., 706, Springer, Berlin, 1979, 344–348 | DOI | MR

[88] Schlichting G., “Polynomidentitäten und Darstellungen von Gruppen”, Monatsh. Math., 90:4 (1980), 311–313 | DOI | MR | Zbl

[89] Shtern A.I., “O svyazi mezhdu topologiyami lokalno bikompaktnoi gruppy i ee dvoistvennogo prostranstva”, Funkts. analiz i ego pril., 5:4 (1971), 56–63 | MR | Zbl

[90] Shtern A.I., “Lokalno bikompaktnye gruppy s konechnomernymi neprivodimymi predstavleniyami”, Mat. sb., 90:1 (1973), 86–95

[91] Shtern A.I., “Compact semitopological semigroups and reflexive representability of topological groups”, Russ. J. Math. Phys., 2:1 (1994), 131–132 | MR | Zbl

[92] Shtern A.I., “Zhestkost i approksimatsiya kvazipredstavlenii amenabelnykh grupp”, Mat. zametki, 65:6 (1999), 908–920 | DOI | MR | Zbl

[93] Shtern A.I., “Kriterii slaboi i silnoi nepreryvnosti predstavlenii topologicheskikh grupp v banakhovykh prostranstvakh”, Mat. sb., 193:9 (2002), 139–156 | DOI | MR | Zbl

[94] Shtern A.I., “Continuity of Banach representations in terms of point variations”, Russ. J. Math. Phys., 9:2 (2002), 250–252 | MR | Zbl

[95] Shtern A.I., “Pochti periodicheskie funktsii i predstavleniya v lokalno vypuklykh prostranstvakh”, UMN, 60:3 (2005), 97–168 | DOI | MR | Zbl

[96] Shtern A.I., “Topologicheskie gruppy s konechnymi gruppovymi algebrami fon Neimana tipa I”, Mat. sb., 196:3 (2005), 143–160 | DOI | MR | Zbl

[97] Shtern A.I., “Van der Waerden's continuity theorem for the commutator subgroups of connected Lie groups and Mishchenko's conjecture”, Adv. Stud. Contemp. Math. (Kyungshang), 13:2 (2006), 143–158 | MR | Zbl

[98] Shtern A.I., “Analog of van der Waerden's continuity theorem and the validity of Mishchenko's conjecture for relatively compact homomorphisms of arbitrary locally compact groups”, Adv. Stud. Contemp. Math. (Kyungshang), 14:1 (2007), 1–20 | MR | Zbl

[99] Shtern A.I., “Konechnomernye kvazipredstavleniya svyaznykh grupp Li i gipoteza Mischenko”, Fund. i prikl. matematika, 13:7 (2007), 85–225 | MR

[100] Shtern A.I., “A criterion for a topological group to admit a continuous embedding in a locally compact group”, Russ. J. Math. Phys., 15:2 (2008), 297–300 | DOI | MR | Zbl

[101] Shtern A.I., “Duality between the compact and discrete objects for noncommutative topological groups”, Adv. Stud. Contemp. Math. (Kyungshang), 16:2 (2008), 143–154 | MR | Zbl

[102] Shtern A.I., “Variant teoremy Van der Vardena i dokazatelstvo gipotezy Mischenko dlya gomomorfizmov lokalno kompaktnykh grupp”, Izv. RAN. Ser. mat., 72:1 (2008), 183–224 | DOI | MR | Zbl

[103] Shtern A.I., “Nepreryvnye vlozheniya topologicheskikh grupp v lokalno kompaktnye gruppy”, Sovremennye problemy matematiki i mekhaniki, 2, no. 1, Izd-vo MGU, M., 2009, 89–98

[104] Shtern A.I., “Freudenthal–Weil theorem for arbitrary embeddings of connected Lie groups in compact groups”, Adv. Stud. Contemp. Math. (Kyungshang), 19:2 (2009), 157–164 | MR | Zbl

[105] Shtern A.I., “Connected Lie groups having faithful locally bounded (not necessarily continuous) finite-dimensional representations”, Russ. J. Math. Phys., 16:4 (2009), 566–567 | DOI | MR | Zbl

[106] Stegall C., “The Radon–Nikodym property in conjugate Banach spaces. II”, Trans. Amer. Math. Soc., 264:2 (1981), 507–519 | MR | Zbl

[107] Stinespring W.F., “Integration theorems for gauges and duality for unimodular groups”, Trans. Amer. Math. Soc., 90 (1959), 15–56 | DOI | MR | Zbl

[108] Takesaki M., “A characterization of group algebras as a converse of Tannaka–Stinespring–Tatsuuma duality theorem”, Amer. J. Math., 91 (1969), 529–564 | DOI | MR | Zbl

[109] Tannaka T., “Über den Dualitätssatz der nichtkommutativen topologischen Gruppen”, Tôhoku Math. J., 45 (1938), 1–12 | Zbl

[110] Tatsuuma N., “A duality theorem for locally compact groups”, J. Math. Kyoto Univ., 6 (1967), 187–293 | MR | Zbl

[111] Taylor K.F., “The type structure of the regular representation of a locally compact group”, Math. Ann., 222:3 (1976), 211–224 | DOI | MR | Zbl

[112] Taylor K.F., “Geometry of the Fourier algebras and locally compact groups with atomic unitary representations”, Math. Ann., 262:2 (1983), 183–190 | DOI | MR | Zbl

[113] Thoma E., “Über unitäre Darstellungen abzählbarer, diskreter Gruppen”, Math. Ann., 153:2 (1964), 111–138 | DOI | MR | Zbl

[114] Thoma E., “Eine Charakterisierung diskreter Gruppen vom Typ I”, Invent. math., 6 (1968), 190–196 | DOI | MR | Zbl

[115] Tkachenko M.G., “Ob ogranichennosti i psevdokompaktnosti v topologicheskikh gruppakh”, Mat. zametki, 41:3 (1987), 400–405 | MR | Zbl

[116] Vaes S., Van Daele A., “Hopf $C^*$-algebras”, Proc. London Math. Soc. Ser. 3, 82:2 (2001), 337–384 | DOI | MR | Zbl

[117] Vainerman L., “The bicrossed product construction for locally compact quantum groups”, Bull. Kerala Math. Assoc., 2007, Spec. Issue, 99–136 arXiv: math/0510411v1. | MR

[118] Vallin J.-M., “$C^*$-algèbres de Hopf et $C^*$-algèbres de Kac”, Proc. London Math. Soc. Ser. 3, 50:1 (1985), 131–174 | DOI | MR | Zbl

[119] Vilenkin N.Ya., “Primechaniya redaktora perevoda”: Veil A., Integrirovanie v topologicheskikh gruppakh i ego prilozheniya, Izd-vo inostr. lit., M., 1950, 167–211

[120] Waterhouse W.C., “Dual groups of vector spaces”, Pacif. J. Math., 26:1 (1968), 193–196 | DOI | MR | Zbl

[121] Weil A., Sur les espaces à structure uniforme et sur la topologie génèrale, Hermann, Paris, 1937

[122] Veil A., Integrirovanie v topologicheskikh gruppakh i ego prilozheniya, Izd-vo inostr. lit., M., 1950; Weil A., L'intégration dans les groupes topologiques et ses applications, Actual. sci. industr., 1145, Hermann, Paris, 1953

[123] Yost D., “Asplund spaces for beginners”, Acta Univ. Carolin. Math. Phys., 34:2 (1993), 159–177 | MR | Zbl