Stability of inflectional elasticae centered at vertices or inflection points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 187-203
Voir la notice de l'article provenant de la source Math-Net.Ru
Stability conditions for inflectional Euler's elasticae centered at vertices or inflection points are obtained. Theoretical results are compared with experimental data for elastic rods.
@article{TM_2010_271_a13,
author = {Yu. L. Sachkov and S. V. Levyakov},
title = {Stability of inflectional elasticae centered at vertices or inflection points},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {187--203},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a13/}
}
TY - JOUR AU - Yu. L. Sachkov AU - S. V. Levyakov TI - Stability of inflectional elasticae centered at vertices or inflection points JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 187 EP - 203 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a13/ LA - ru ID - TM_2010_271_a13 ER -
%0 Journal Article %A Yu. L. Sachkov %A S. V. Levyakov %T Stability of inflectional elasticae centered at vertices or inflection points %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 187-203 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_271_a13/ %G ru %F TM_2010_271_a13
Yu. L. Sachkov; S. V. Levyakov. Stability of inflectional elasticae centered at vertices or inflection points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 187-203. http://geodesic.mathdoc.fr/item/TM_2010_271_a13/