Tracking a~reference solution of a~control system of phase field equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 148-158
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of tracking a reference solution of a dynamical system described by a pair of distributed differential equations, the phase field equations. To solve this problem, we propose an algorithm based on Yu. S. Osipov's theory of dynamic inversion and on N. N. Krasovskii's extremal shift method developed in the theory of positional differential games.
@article{TM_2010_271_a10,
author = {V. I. Maksimov},
title = {Tracking a~reference solution of a~control system of phase field equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {148--158},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a10/}
}
TY - JOUR AU - V. I. Maksimov TI - Tracking a~reference solution of a~control system of phase field equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 148 EP - 158 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a10/ LA - ru ID - TM_2010_271_a10 ER -
V. I. Maksimov. Tracking a~reference solution of a~control system of phase field equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 148-158. http://geodesic.mathdoc.fr/item/TM_2010_271_a10/