Tracking a~reference solution of a~control system of phase field equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 148-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of tracking a reference solution of a dynamical system described by a pair of distributed differential equations, the phase field equations. To solve this problem, we propose an algorithm based on Yu. S. Osipov's theory of dynamic inversion and on N. N. Krasovskii's extremal shift method developed in the theory of positional differential games.
@article{TM_2010_271_a10,
     author = {V. I. Maksimov},
     title = {Tracking a~reference solution of a~control system of phase field equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {148--158},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a10/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - Tracking a~reference solution of a~control system of phase field equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 148
EP  - 158
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a10/
LA  - ru
ID  - TM_2010_271_a10
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T Tracking a~reference solution of a~control system of phase field equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 148-158
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a10/
%G ru
%F TM_2010_271_a10
V. I. Maksimov. Tracking a~reference solution of a~control system of phase field equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 148-158. http://geodesic.mathdoc.fr/item/TM_2010_271_a10/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[2] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. tekhn. kibern., 1983, no. 2, 51–60 | MR

[3] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995 | MR | Zbl

[4] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, UMN, 61:4 (2006), 25–76 | DOI | MR | Zbl

[5] Kryazhimskii A.V., Maksimov V.I., “Dinamicheskaya rekonstruktsiya sostoyanii i garantiruyuschee upravlenie sistemoi parabolicheskikh uravnenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 157–172 | MR

[6] Blizorukova M.S., Maksimov V.I., “Ob odnoi zadache upravleniya pri nepolnoi informatsii”, Avtomatika i telemekhanika, 2006, no. 3, 131–142 | MR | Zbl

[7] Caginalp G., “An analysis of a phase field model of a free boundary”, Arch. Ration. Mech. Anal., 92 (1986), 205–245 | DOI | MR | Zbl

[8] Heinkenschloss M., Tröltzsch F., “Analysis of the Lagrange–SQP–Newton method for the control of a phase field equation”, Control and Cybern., 28:2 (1999), 177–211 | MR | Zbl

[9] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[10] Hoffman K.-H., Jiang L.S., “Optimal control of a phase field model for solidification”, Numer. Funct. Anal. and Optim., 13:1–2 (1992), 11–27 | DOI | MR | Zbl

[11] Maksimov V.I., Trolts F., “Ob odnoi obratnoi zadache dlya uravnenii fazovogo polya”, DAN, 396:3 (2004), 309–312 | MR | Zbl

[12] Maksimov V., Tröltzsch F., “Dynamical state and control reconstruction for a phase field model”, Dyn. Contin., Discrete and Impuls. Syst. A: Math. Anal., 13:3–4 (2006), 419–444 | MR | Zbl