Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_270_a9, author = {Marco Caponigro}, title = {Families of vector fields which generate the group of diffeomorphisms}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {147--160}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a9/} }
Marco Caponigro. Families of vector fields which generate the group of diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 147-160. http://geodesic.mathdoc.fr/item/TM_2010_270_a9/
[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Springer, Berlin, 2004 | MR
[2] Chow W.-L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordinung”, Math. Ann., 117 (1939), 98–105 | DOI | MR
[3] Hamilton R.S., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc., 7 (1982), 65–222 | DOI | MR | Zbl
[4] Lobry C., “Une propriété générique des couples de champs de vecteurs”, Czech. Math. J., 22 (1972), 230–237 | MR | Zbl
[5] Roman S., “The formula of Faá di Bruno”, Amer. Math. Mon., 87:10 (1980), 805–809 | DOI | MR | Zbl
[6] Palis J., Smale S., “Structural stability theorems”, Global analysis (Berkeley, Calif., 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence (RI), 1970, 223–231 | DOI | MR
[7] Sussmann H.J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl
[8] Rashevskii P.K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. ped. in-ta im. Libknekhta. Ser. fiz.-mat. nauk, 1938, no. 2, 83–94
[9] Thurston W., “Foliations and groups of diffeomorphisms”, Bull. Amer. Math. Soc., 80 (1974), 304–307 | DOI | MR | Zbl