Families of vector fields which generate the group of diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 147-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a compact manifold $M$ and a family of vector fields $\mathcal F$ such that the group generated by $\mathcal F$ acts transitively on $M$, we prove that the group of all diffeomorphisms of $M$ that are isotopic to the identity is generated by the exponentials of vector fields in $\mathcal F$ rescaled by smooth functions.
@article{TM_2010_270_a9,
     author = {Marco Caponigro},
     title = {Families of vector fields which generate the group of diffeomorphisms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {147--160},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a9/}
}
TY  - JOUR
AU  - Marco Caponigro
TI  - Families of vector fields which generate the group of diffeomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 147
EP  - 160
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a9/
LA  - en
ID  - TM_2010_270_a9
ER  - 
%0 Journal Article
%A Marco Caponigro
%T Families of vector fields which generate the group of diffeomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 147-160
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a9/
%G en
%F TM_2010_270_a9
Marco Caponigro. Families of vector fields which generate the group of diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 147-160. http://geodesic.mathdoc.fr/item/TM_2010_270_a9/

[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Springer, Berlin, 2004 | MR

[2] Chow W.-L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordinung”, Math. Ann., 117 (1939), 98–105 | DOI | MR

[3] Hamilton R.S., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc., 7 (1982), 65–222 | DOI | MR | Zbl

[4] Lobry C., “Une propriété générique des couples de champs de vecteurs”, Czech. Math. J., 22 (1972), 230–237 | MR | Zbl

[5] Roman S., “The formula of Faá di Bruno”, Amer. Math. Mon., 87:10 (1980), 805–809 | DOI | MR | Zbl

[6] Palis J., Smale S., “Structural stability theorems”, Global analysis (Berkeley, Calif., 1968), Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence (RI), 1970, 223–231 | DOI | MR

[7] Sussmann H.J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[8] Rashevskii P.K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. ped. in-ta im. Libknekhta. Ser. fiz.-mat. nauk, 1938, no. 2, 83–94

[9] Thurston W., “Foliations and groups of diffeomorphisms”, Bull. Amer. Math. Soc., 80 (1974), 304–307 | DOI | MR | Zbl