Existence of planar curves minimizing length and curvature
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 49-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing a curve that is partially hidden or corrupted by minimizing the functional $\int\sqrt{1+K_\gamma^2}\,ds$, depending both on the length and curvature $K$. We fix starting and ending points as well as initial and final directions. For this functional we discuss the problem of existence of minimizers on various functional spaces. We find nonexistence of minimizers in cases in which initial and final directions are considered with orientation. In this case, minimizing sequences of trajectories may converge to curves with angles. We instead prove the existence of minimizers for the “time-reparametrized” functional $\int\|\dot\gamma(t)\|\sqrt{1+K_\gamma^2}\,dt$ for all boundary conditions if the initial and final directions are considered regardless of orientation. In this case, minimizers may present cusps (at most two) but not angles.
@article{TM_2010_270_a3,
     author = {Ugo Boscain and Gr\'egoire Charlot and Francesco Rossi},
     title = {Existence of planar curves minimizing length and curvature},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a3/}
}
TY  - JOUR
AU  - Ugo Boscain
AU  - Grégoire Charlot
AU  - Francesco Rossi
TI  - Existence of planar curves minimizing length and curvature
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 49
EP  - 61
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a3/
LA  - en
ID  - TM_2010_270_a3
ER  - 
%0 Journal Article
%A Ugo Boscain
%A Grégoire Charlot
%A Francesco Rossi
%T Existence of planar curves minimizing length and curvature
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 49-61
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a3/
%G en
%F TM_2010_270_a3
Ugo Boscain; Grégoire Charlot; Francesco Rossi. Existence of planar curves minimizing length and curvature. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 49-61. http://geodesic.mathdoc.fr/item/TM_2010_270_a3/

[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl

[2] Bellettini G., “Variational approximation of functionals with curvatures and related properties”, J. Convex Anal., 4:1 (1997), 91–108 | MR | Zbl

[3] Boscain U., Rossi F., “Invariant Carnot–Caratheodory metrics on $S^3$, $SO(3)$, $SL(2)$, and lens spaces”, SIAM J. Control and Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl

[4] Boscain U., Rossi F., “Projective Reeds–Shepp car on $S^2$ with quadratic cost”, ESAIM: Control, Optim. and Calc. Var., 16:2 (2010), 275–297 | DOI | MR | Zbl

[5] Cao F., Gousseau Y., Masnou S., Pérez P., Geometrically guided exemplar-based inpainting, Preprint, 2010 http://math.univ-lyon1.fr/homes-www/masnou/fichiers/publications/inpainting9.pdf

[6] Citti G., Sarti A., “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging and Vision, 24:3 (2006), 307–326 | DOI | MR

[7] Coope I.D., “Curve interpolation with nonlinear spiral splines”, IMA J. Numer. Anal., 13:3 (1993), 327–341 | DOI | MR | Zbl

[8] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[9] Linnér A., “Existence of free nonclosed Euler–Bernoulli elastica”, Nonlin. Anal. Theory, Meth. and Appl., 21:8 (1993), 575–593 | DOI | MR | Zbl

[10] Linnér A., “Curve-straightening and the Palais–Smale condition”, Trans. Amer. Math. Soc., 350:9 (1998), 3743–3765 | DOI | MR | Zbl

[11] Loewen P.D., “On the Lavrentiev phenomenon”, Canad. Math. Bull., 30:1 (1987), 102–108 | DOI | MR | Zbl

[12] Moiseev I., Sachkov Yu.L., “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM: Control, Optim. and Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl

[13] Petitot J., Neurogéométrie de la vision: Modèles mathématiques et physiques des architectures fonctionnelles, Éd. École Polytech., Palaiseau, 2008

[14] Petitot J., Tondut Y., “Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux”, Math. Inform. et Sci. Hum., 145 (1999), 5–101 | MR

[15] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., The mathematical theory of optimal processes, Interscience, New York, 1962 | MR

[16] Reeds J.A., Shepp L.A., “Optimal paths for a car that goes both forwards and backwards”, Pacif. J. Math., 145:2 (1990), 367–393 | DOI | MR

[17] Sachkov Yu.L., “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: Control, Optim. and Calc. Var., 2009 | DOI

[18] Sachkov Yu.L., Cut time and optimal synthesis in sub-Riemannian problem on the group of motions of a plane, E-print, 2009, arXiv: 0903.0727