Correctors for some asymptotic problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 266-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of anisotropic singular perturbation boundary value problems, the solution $u_\varepsilon$ does not converge, in the $H^1$-norm on the whole domain, towards some $u_0$. In this paper we construct correctors to have good approximations of $u_\varepsilon$ in the $H^1$-norm on the whole domain. Since the anisotropic singular perturbation problems can be connected to the study of the asymptotic behaviour of problems defined in cylindrical domains becoming unbounded in some directions, we transpose our results for such problems.
@article{TM_2010_270_a20,
     author = {Michel Chipot and Senoussi Guesmia},
     title = {Correctors for some asymptotic problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {266--280},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a20/}
}
TY  - JOUR
AU  - Michel Chipot
AU  - Senoussi Guesmia
TI  - Correctors for some asymptotic problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 266
EP  - 280
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a20/
LA  - en
ID  - TM_2010_270_a20
ER  - 
%0 Journal Article
%A Michel Chipot
%A Senoussi Guesmia
%T Correctors for some asymptotic problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 266-280
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a20/
%G en
%F TM_2010_270_a20
Michel Chipot; Senoussi Guesmia. Correctors for some asymptotic problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 266-280. http://geodesic.mathdoc.fr/item/TM_2010_270_a20/

[1] Brighi B., Guesmia S., “Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain”, Discrete and Contin. Dyn. Syst. Suppl., 2007, 160–169 | MR | Zbl

[2] Chipot M., $\ell $ goes to plus infinity, Birkhäuser, Basel, 2002 | MR | Zbl

[3] Chipot M., “On some anisotropic singular perturbation problems”, Asymptotic Anal., 55 (2007), 125–144 | MR | Zbl

[4] Chipot M., Guesmia S., “On the asymptotic behavior of elliptic, anisotropic singular perturbations problems”, Commun. Pure and Appl. Anal., 8:1 (2009), 179–193 | MR | Zbl

[5] Chipot M., Mardare S., “On correctors for the Stokes problem in cylinders”, Proc. Intern. Conf. on: Nonlinear phenomena with energy dissipation. Mathematical analysis, modeling and simulation (Chiba (Japan), 2007), Gakkotosho, Tokyo, 2008, 37–52 | MR | Zbl

[6] Chipot M., Yeressian K., “Exponential rates of convergence by an iteration technique”, C. r. Math. Acad. sci. Paris., 346 (2008), 21–26 | DOI | MR | Zbl

[7] Evans L.C., Partial differential equations, Amer. Math. Soc., Providence (RI), 1998 | MR

[8] Guesmia S., Etude du comportement asymptotique de certaines équations aux dérivées partielles dans des domaines cylindriques, Thèse, Univ. Haute Alsace, Mulhouse, Dec. 2006

[9] Guesmia S., “Asymptotic behavior of elliptic boundary-value problems with some small coefficients”, Electron. J. Diff. Equat., 59 (2008), 13 pp. | MR | Zbl

[10] Lions J.L., Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lect. Notes Math., 323, Springer, Berlin, 1973 | MR | Zbl