Correctors for some asymptotic problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 266-280

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of anisotropic singular perturbation boundary value problems, the solution $u_\varepsilon$ does not converge, in the $H^1$-norm on the whole domain, towards some $u_0$. In this paper we construct correctors to have good approximations of $u_\varepsilon$ in the $H^1$-norm on the whole domain. Since the anisotropic singular perturbation problems can be connected to the study of the asymptotic behaviour of problems defined in cylindrical domains becoming unbounded in some directions, we transpose our results for such problems.
@article{TM_2010_270_a20,
     author = {Michel Chipot and Senoussi Guesmia},
     title = {Correctors for some asymptotic problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {266--280},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a20/}
}
TY  - JOUR
AU  - Michel Chipot
AU  - Senoussi Guesmia
TI  - Correctors for some asymptotic problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 266
EP  - 280
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a20/
LA  - en
ID  - TM_2010_270_a20
ER  - 
%0 Journal Article
%A Michel Chipot
%A Senoussi Guesmia
%T Correctors for some asymptotic problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 266-280
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a20/
%G en
%F TM_2010_270_a20
Michel Chipot; Senoussi Guesmia. Correctors for some asymptotic problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 266-280. http://geodesic.mathdoc.fr/item/TM_2010_270_a20/