On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 33-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to establish sufficient conditions of the finite time blow-up in solutions of the homogeneous Dirichlet problem for the anisotropic parabolic equations with variable nonlinearity $u_t=\sum_{i=1}^nD_i\bigl(a_i(x,t)|D_iu|^{p_i(x)-2}D_iu\bigr)+\sum_{i=1}^Kb_i(x,t)|u|^{\sigma_i(x,t)-2}u$. Two different cases are studied. In the first case $a_i\equiv a_i(x)$, $p_i\equiv2$, $\sigma_i\equiv\sigma_i(x,t)$, and $b_i(x,t)\geq0$. We show that in this case every solution corresponding to a “large” initial function blows up in finite time if there exists at least one $j$ for which $\min\sigma_j(x,t)>2$ and either $b_j>0$, or $b_j(x,t)\geq0$ and $\int_\Omega b_j^{-\rho(t)}(x,t)\,dx\infty$ with some $\rho(t)>0$ depending on $\sigma_j$. In the case of the quasilinear equation with the exponents $p_i$ and $\sigma_i$ depending only on $x$, we show that the solutions may blow up if $\min\sigma_i\geq\max p_i$, $b_i\geq0$, and there exists at least one $j$ for which $\min\sigma_j>\max p_j$ and $b_j>0$. We extend these results to a semilinear equation with nonlocal forcing terms and quasilinear equations which combine the absorption ($b_i\leq0$) and reaction terms.
@article{TM_2010_270_a2,
     author = {S. Antontsev and S. Shmarev},
     title = {On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a2/}
}
TY  - JOUR
AU  - S. Antontsev
AU  - S. Shmarev
TI  - On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 33
EP  - 48
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a2/
LA  - en
ID  - TM_2010_270_a2
ER  - 
%0 Journal Article
%A S. Antontsev
%A S. Shmarev
%T On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 33-48
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a2/
%G en
%F TM_2010_270_a2
S. Antontsev; S. Shmarev. On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 33-48. http://geodesic.mathdoc.fr/item/TM_2010_270_a2/