On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to establish sufficient conditions of the finite time blow-up in solutions of the homogeneous Dirichlet problem for the anisotropic parabolic equations with variable nonlinearity $u_t=\sum_{i=1}^nD_i\bigl(a_i(x,t)|D_iu|^{p_i(x)-2}D_iu\bigr)+\sum_{i=1}^Kb_i(x,t)|u|^{\sigma_i(x,t)-2}u$. Two different cases are studied. In the first case $a_i\equiv a_i(x)$, $p_i\equiv2$, $\sigma_i\equiv\sigma_i(x,t)$, and $b_i(x,t)\geq0$. We show that in this case every solution corresponding to a “large” initial function blows up in finite time if there exists at least one $j$ for which $\min\sigma_j(x,t)>2$ and either $b_j>0$, or $b_j(x,t)\geq0$ and $\int_\Omega b_j^{-\rho(t)}(x,t)\,dx\infty$ with some $\rho(t)>0$ depending on $\sigma_j$. In the case of the quasilinear equation with the exponents $p_i$ and $\sigma_i$ depending only on $x$, we show that the solutions may blow up if $\min\sigma_i\geq\max p_i$, $b_i\geq0$, and there exists at least one $j$ for which $\min\sigma_j>\max p_j$ and $b_j>0$. We extend these results to a semilinear equation with nonlocal forcing terms and quasilinear equations which combine the absorption ($b_i\leq0$) and reaction terms.
@article{TM_2010_270_a2,
     author = {S. Antontsev and S. Shmarev},
     title = {On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a2/}
}
TY  - JOUR
AU  - S. Antontsev
AU  - S. Shmarev
TI  - On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 33
EP  - 48
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a2/
LA  - en
ID  - TM_2010_270_a2
ER  - 
%0 Journal Article
%A S. Antontsev
%A S. Shmarev
%T On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 33-48
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a2/
%G en
%F TM_2010_270_a2
S. Antontsev; S. Shmarev. On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 33-48. http://geodesic.mathdoc.fr/item/TM_2010_270_a2/

[1] Aboulaich R., Meskine D., Souissi A., “New diffusion models in image processing”, Comput. and Math. Appl., 56 (2008), 874–882 | DOI | MR | Zbl

[2] Acerbi E., Mingione G., “Regularity results for stationary electro-rheological fluids”, Arch. Ration. Mech. Anal., 164 (2002), 213–259 | DOI | MR | Zbl

[3] Acerbi E., Mingione G., Seregin G., “Regularity results for parabolic systems related to a class of non-Newtonian fluids”, Ann. Inst. H. Poincaré. Anal. non lin., 21:1 (2004), 25–60 | MR | Zbl

[4] Alkhutov Yu.A., Antontsev S.N., Zhikov V.V., “Parabolicheskie uravneniya s peremennym poryadkom nelineinosti”, Zbirnik prats Inst. matematiki NAN Ukr. Kiïv, 6:1 (2009), 23–50

[5] Antontsev S., Chipot M., Xie Y., “Uniqueness results for equations of the $p(x)$-Laplacian type”, Adv. Math. Sci. and Appl., 17 (2007), 287–304 | MR | Zbl

[6] Antontsev S.N., Rodrigues J.F., “On stationary thermo-rheological viscous flows”, Ann. Univ. Ferrara. Sez. 7. Sci. Mat., 52 (2006), 19–36 | DOI | MR | Zbl

[7] Antontsev S., Shmarev S., “Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions”, Nonlin. Anal. Theory, Meth. and Appl., 65 (2006), 728–761 | DOI | MR | Zbl

[8] Antontsev S., Shmarev S., “Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions”, Handbook of differential equations. Stationary partial differential equations, v. 3, Elsevier, Amsterdam, 2006, 1–100 | DOI | Zbl

[9] Antontsev S., Shmarev S., “Parabolic equations with anisotropic nonstandard growth conditions”, Free boundary problems. Theory and applications, Intern. Ser. Numer. Math., 154, Birkhäuser, Basel, 2007, 33–44 | DOI | MR | Zbl

[10] Antontsev S., Shmarev S., “Extinction of solutions of parabolic equations with variable anisotropic nonlinearities”, Tr. MIAN, 261, 2008, 16–25 | MR

[11] Antontsev S., Shmarev S., “Anisotropic parabolic equations with variable nonlinearity”, Publ. Mat., 53:2 (2009), 355–399 | DOI | MR | Zbl

[12] Antontsev S., Shmarev S., “Localization of solutions of anisotropic parabolic equations”, Nonlin. Anal. Theory, Meth. and Appl., 71:12 (2009), e725–e737 | DOI | MR | Zbl

[13] Antontsev S., Shmarev S., “Vanishing solutions of anisotropic parabolic equations with variable nonlinearity”, J. Math. Anal. and Appl., 361:2 (2010), 371–391 | DOI | MR | Zbl

[14] Antontsev S., Shmarev S., “Blow-up of solutions to parabolic equations with nonstandard growth conditions”, J. Comput. and Appl. Math., 234:9 (2010), 2633–2645 | DOI | Zbl

[15] Antontsev S., Zhikov V., “Hihger integrability for parabolic equations of $p(x,t)$-Laplacian type”, Adv. Diff. Equat., 10:9 (2005), 1053–1080 | MR | Zbl

[16] Chen Y., Levine S., Rao M., “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66 (2006), 1383–1406 | DOI | MR | Zbl

[17] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha }$”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 13 (1966), 109–124 | MR | Zbl

[18] Fujita H., “On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations”, Nonlinear functional analysis, Proc. Symp. Pure Math. (Chicago, 1968), Part 1, Proc. Symp. Pure Math., 18, Amer. Math. Soc., Providence (RI), 1970, 105–113 | DOI | MR

[19] Galaktionov V.A., Pohozaev S.I., “Blow-up and critical exponents for parabolic equations with non-divergent operators: Dual porous medium and thin film operators”, J. Evol. Equat., 6 (2006), 45–69 | DOI | MR | Zbl

[20] Galaktionov V.A., Vázquez J.L., A stability technique for evolution partial differential equations: A dynamical systems approach, Progr. Nonlin. Diff. Equat. and Appl., 56, Birkhäuser, Boston, 2004 | MR | Zbl

[21] Kaplan S., “On the growth of solutions of quasi-linear parabolic equations”, Commun. Pure and Appl. Math., 16 (1963), 305–330 | DOI | MR | Zbl

[22] Levine S., Chen Y., Stanich J., Image restoration via nonstandard diffusion, Tech. Rep. no. 04-01, Dept. Math. and Comput. Sci., Duquesne Univ., Pittsburgh, 2004

[23] Mitidieri E., Pohozaev S.I., “Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb R^n$”, J. Evol. Equat., 1 (2001), 189–220 | DOI | MR | Zbl

[24] Pinasco J.P., “Blow-up for parabolic and hyperbolic problems with variable exponents”, Nonlin. Anal. Theory, Meth. and Appl., 71:3–4 (2009), 1094–1099 | DOI | MR | Zbl

[25] Pohozaev S.I., Tesei A., “Blow-up of nonnegative solutions to quasilinear parabolic inequalities”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Ser. 9. Rend. Lincei. Mat. e Appl., 11:2 (2000), 99–109 | MR | Zbl

[26] Pokhozhaev S.I., Tesei A., “O kriticheskikh pokazatelyakh otsutstviya reshenii dlya sistem kvazilineinykh parabolicheskikh neravenstv”, Dif. uravneniya, 37:4 (2001), 521–528 | MR | Zbl

[27] Rajagopal K.R., Růžička M., “Mathematical modeling of electrorheological materials”, Contin. Mech. and Thermodyn., 13 (2001), 59–78 | DOI | Zbl

[28] Růžička M., Electrorheological fluids: Modeling and mathematical theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR

[29] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Blow-up in quasilinear parabolic equations, W. de Gruyter, Berlin, 1995 | MR | Zbl

[30] Tsutsumi M., “Existence and nonexistence of global solutions for nonlinear parabolic equations”, Publ. Res. Inst. Math. Sci., Kyoto Univ., 8 (1972), 211–229 | DOI | MR | Zbl

[31] Tsutsumi M., “Existence and nonexistence of global solutions of the first boundary value problem for a certain quasilinear parabolic equation”, Funkc. Ekvacioj, 17 (1974), 13–24 | MR | Zbl

[32] Zhikov V.V., “Ob effekte Lavrenteva”, DAN, 345:1 (1995), 10–14 | MR | Zbl

[33] Zhikov V.V., “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl