Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_270_a18, author = {Ulysse Serres}, title = {Microlocal normal forms for regular fully nonlinear two-dimensional control systems}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {243--248}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a18/} }
TY - JOUR AU - Ulysse Serres TI - Microlocal normal forms for regular fully nonlinear two-dimensional control systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 243 EP - 248 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_270_a18/ LA - en ID - TM_2010_270_a18 ER -
Ulysse Serres. Microlocal normal forms for regular fully nonlinear two-dimensional control systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 243-248. http://geodesic.mathdoc.fr/item/TM_2010_270_a18/
[1] Agrachev A., Zelenko I., “On feedback classification of control-affine systems with one- and two-dimensional inputs”, SIAM J. Control and Optim., 46:4 (2007), 1431–1460 | DOI | MR | Zbl
[2] Agrachev A.A., “Feedback-invariant optimal control theory and differential geometry. II: Jacobi curves for singular extremals”, J. Dyn. and Control Syst., 4:4 (1998), 583–604 | DOI | MR | Zbl
[3] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Control theory and optimization. II, Springer, Berlin, 2004 | MR | Zbl
[4] Brunovský P., “A classification of linear controllable systems”, Kybernetika (Prague), 6 (1970), 173–188 | MR | Zbl
[5] Gantmacher F.R., The theory of matrices, v. 1, 2, Chelsea Publ., New York, 1959 | MR
[6] Jakubczyk B., “Equivalence and invariants of nonlinear control systems”, Nonlinear controllability and optimal control, Pure and Appl. Math., 133, M. Dekker, New York, 1990, 177–218 | MR | Zbl
[7] Jakubczyk B., “Critical Hamiltonians and feedback invariants”, Geometry of feedback and optimal control, Pure and Appl. Math., 207, M. Dekker, New York, 1998, 219–256 | MR | Zbl
[8] Jakubczyk B., Respondek W., “Feedback classification of analytic control systems in the plane”, Analysis of controlled dynamical systems, Proc. conf. Lyon, 1990, Progr. Syst. Control Theory, 8, Birkhäuser, Boston (MA), 1991, 263–273 | MR | Zbl
[9] Kronecker L., “Algebraische Reduction der Schaaren bilinearer Formen”, Sitzungsber. Preuss. Akad. Wiss. Berlin., 1890, 1225–1237 | Zbl
[10] Pomet J.-B., Kupka I., “Global aspects of feedback equivalence for a parametrized family of systems”, Analysis of controlled dynamical systems, Proc. conf. Lyon, 1990, Progr. Syst. Control Theory, 8, Birkhäuser, Boston (MA), 1991, 337–346 | MR | Zbl
[11] Pomet J.-B., Kupka I.A.K., “On feedback equivalence of a parameterized family of nonlinear systems”, SIAM J. Control and Optim., 33:4 (1995), 1170–1207 | DOI | MR | Zbl
[12] Respondek W., “Feedback classification of nonlinear control systems on $\mathbb R^2$ and $\mathbb R^3$”, Geometry of feedback and optimal control, Pure and Appl. Math., 207, M. Dekker, New York, 1998, 347–381 | MR | Zbl