Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 233-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an adiabatic limit in $(2+1)$-dimensional hyperbolic Ginzburg–Landau equations and 4-dimensional symplectic Seiberg–Witten equations. In dimension $3=2+1$ the limiting procedure establishes a correspondence between solutions of Ginzburg–Landau equations and adiabatic paths in the moduli space of static solutions, called vortices. The 4-dimensional adiabatic limit may be considered as a complexification of the $(2+1)$-dimensional procedure with time variable being “complexified.” The adiabatic limit in dimension $4=2+2$ establishes a correspondence between solutions of Seiberg–Witten equations and pseudoholomorphic paths in the moduli space of vortices.
@article{TM_2010_270_a17,
     author = {A. G. Sergeev},
     title = {Adiabatic limit in the {Ginzburg--Landau} and {Seiberg--Witten} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {233--242},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a17/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 233
EP  - 242
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a17/
LA  - ru
ID  - TM_2010_270_a17
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 233-242
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a17/
%G ru
%F TM_2010_270_a17
A. G. Sergeev. Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 233-242. http://geodesic.mathdoc.fr/item/TM_2010_270_a17/

[1] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl

[2] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Warwick Univ., 1996 | MR

[3] Sergeev A.G., “Adiabatic limit in the Seiberg–Witten equations”, Geometry, topology, and mathematical physics, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence (RI), 2004, 281–295 | MR | Zbl

[4] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl

[5] Taubes C.H., “SW $\Rightarrow$ Gr: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl

[6] Taubes C.H., “Gr $\Rightarrow$ SW: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | MR | Zbl