Description of interpolation spaces for local Morrey-type spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 52-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the real interpolation method and prove that for local Morrey spaces, in the case when they have the same integrability parameter, the interpolation spaces are again local Morrey-type spaces with appropriately chosen parameters. Thus, in contrast to the standard Morrey-type spaces, these local spaces form an interpolation scale. In particular, this is true in the so-called nondiagonal case.
@article{TM_2010_269_a3,
     author = {V. I. Burenkov and E. D. Nursultanov},
     title = {Description of interpolation spaces for local {Morrey-type} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--62},
     year = {2010},
     volume = {269},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a3/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - E. D. Nursultanov
TI  - Description of interpolation spaces for local Morrey-type spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 52
EP  - 62
VL  - 269
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a3/
LA  - ru
ID  - TM_2010_269_a3
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A E. D. Nursultanov
%T Description of interpolation spaces for local Morrey-type spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 52-62
%V 269
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a3/
%G ru
%F TM_2010_269_a3
V. I. Burenkov; E. D. Nursultanov. Description of interpolation spaces for local Morrey-type spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 52-62. http://geodesic.mathdoc.fr/item/TM_2010_269_a3/

[1] Adams D.R., “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl

[2] Blasco O., Ruiz A., Vega L., “Non interpolation in Morrey–Campanato and block spaces”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4., 28:1 (1999), 31–40 | MR | Zbl

[3] Burenkov V.I., Guliyev H.V., “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Stud. math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[4] Burenkov V.I., Guliyev H.V., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. and Appl. Math., 208 (2007), 280–301 | DOI | MR | Zbl

[5] Burenkov V.I., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[6] Burenkov V.I., Guliev V.S., Tararykova T.V., Sherbetchi A., “Neobkhodimye i dostatochnye usloviya ogranichennosti istinnykh singulyarnykh integralnykh operatorov v lokalnykh prostranstvakh tipa Morri”, DAN, 422:1 (2008), 11–14 | MR | Zbl

[7] Campanato S., Murthy M.K.V., “Una generalizzazione del teorema di Riesz–Thorin”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3., 19 (1965), 87–100 | MR | Zbl

[8] Chiarenza F., Frasca M., “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Mat. e Appl. Ser. 7., 7 (1987), 273–279 | MR | Zbl

[9] Chiarenza F., Ruiz A., “Uniform $L^2$-weighted Sobolev inequalities”, Proc. Amer. Math. Soc., 112 (1991), 53–64 | MR | Zbl

[10] Chanillo S., Sawyer E., “Unique continuation for $\Delta +v$ and the C. Fefferman–Phong class”, Trans. Amer. Math. Soc., 318 (1990), 275–300 | DOI | MR | Zbl

[11] Gilbert J.E., “Interpolation between weighted $L_p$-spaces”, Ark. mat., 10:2 (1972), 235–249 | DOI | MR | Zbl

[12] Mizuhara T., “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic analysis, ICM 90 Satell. Conf. Proc., ed. S. Igari, Springer, Tokyo, 1991, 183–189 | MR

[13] Morrey C.B., Jr., “On the solution of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[14] Nakai E., “Hardy–Littlewood maximal operator, singular integral operators and Riez potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[15] Peetre J., “On an interpolation theorem of Foiaş and Lions”, Acta sci. math., 25:3–4 (1964), 255–261 | MR | Zbl

[16] Peetre J., “On the theory of $\mathcal L_{p,\lambda }$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl

[17] Ruiz A., Vega L., “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation on Morrey spaces”, Publ. Mat. Barc., 39 (1995), 405–411 | DOI | MR | Zbl

[18] Stampacchia G., “$\mathcal L_{p,\lambda }$-spaces and interpolation”, Commun. Pure and Appl. Math., 17 (1964), 293–306 | DOI | MR | Zbl

[19] Stein E.M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87:1 (1958), 159–172 | DOI | MR | Zbl

[20] Taylor M.E., “Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations”, Commun. Part. Diff. Equat., 17 (1992), 1407–1456 | DOI | MR | Zbl