Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_269_a3, author = {V. I. Burenkov and E. D. Nursultanov}, title = {Description of interpolation spaces for local {Morrey-type} spaces}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {52--62}, publisher = {mathdoc}, volume = {269}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a3/} }
TY - JOUR AU - V. I. Burenkov AU - E. D. Nursultanov TI - Description of interpolation spaces for local Morrey-type spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 52 EP - 62 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_269_a3/ LA - ru ID - TM_2010_269_a3 ER -
V. I. Burenkov; E. D. Nursultanov. Description of interpolation spaces for local Morrey-type spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 52-62. http://geodesic.mathdoc.fr/item/TM_2010_269_a3/
[1] Adams D.R., “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl
[2] Blasco O., Ruiz A., Vega L., “Non interpolation in Morrey–Campanato and block spaces”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4., 28:1 (1999), 31–40 | MR | Zbl
[3] Burenkov V.I., Guliyev H.V., “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Stud. math., 163:2 (2004), 157–176 | DOI | MR | Zbl
[4] Burenkov V.I., Guliyev H.V., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. and Appl. Math., 208 (2007), 280–301 | DOI | MR | Zbl
[5] Burenkov V.I., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl
[6] Burenkov V.I., Guliev V.S., Tararykova T.V., Sherbetchi A., “Neobkhodimye i dostatochnye usloviya ogranichennosti istinnykh singulyarnykh integralnykh operatorov v lokalnykh prostranstvakh tipa Morri”, DAN, 422:1 (2008), 11–14 | MR | Zbl
[7] Campanato S., Murthy M.K.V., “Una generalizzazione del teorema di Riesz–Thorin”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3., 19 (1965), 87–100 | MR | Zbl
[8] Chiarenza F., Frasca M., “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Mat. e Appl. Ser. 7., 7 (1987), 273–279 | MR | Zbl
[9] Chiarenza F., Ruiz A., “Uniform $L^2$-weighted Sobolev inequalities”, Proc. Amer. Math. Soc., 112 (1991), 53–64 | MR | Zbl
[10] Chanillo S., Sawyer E., “Unique continuation for $\Delta +v$ and the C. Fefferman–Phong class”, Trans. Amer. Math. Soc., 318 (1990), 275–300 | DOI | MR | Zbl
[11] Gilbert J.E., “Interpolation between weighted $L_p$-spaces”, Ark. mat., 10:2 (1972), 235–249 | DOI | MR | Zbl
[12] Mizuhara T., “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic analysis, ICM 90 Satell. Conf. Proc., ed. S. Igari, Springer, Tokyo, 1991, 183–189 | MR
[13] Morrey C.B., Jr., “On the solution of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl
[14] Nakai E., “Hardy–Littlewood maximal operator, singular integral operators and Riez potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl
[15] Peetre J., “On an interpolation theorem of Foiaş and Lions”, Acta sci. math., 25:3–4 (1964), 255–261 | MR | Zbl
[16] Peetre J., “On the theory of $\mathcal L_{p,\lambda }$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl
[17] Ruiz A., Vega L., “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation on Morrey spaces”, Publ. Mat. Barc., 39 (1995), 405–411 | DOI | MR | Zbl
[18] Stampacchia G., “$\mathcal L_{p,\lambda }$-spaces and interpolation”, Commun. Pure and Appl. Math., 17 (1964), 293–306 | DOI | MR | Zbl
[19] Stein E.M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87:1 (1958), 159–172 | DOI | MR | Zbl
[20] Taylor M.E., “Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations”, Commun. Part. Diff. Equat., 17 (1992), 1407–1456 | DOI | MR | Zbl