Description of interpolation spaces for local Morrey-type spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the real interpolation method and prove that for local Morrey spaces, in the case when they have the same integrability parameter, the interpolation spaces are again local Morrey-type spaces with appropriately chosen parameters. Thus, in contrast to the standard Morrey-type spaces, these local spaces form an interpolation scale. In particular, this is true in the so-called nondiagonal case.
@article{TM_2010_269_a3,
     author = {V. I. Burenkov and E. D. Nursultanov},
     title = {Description of interpolation spaces for local {Morrey-type} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a3/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - E. D. Nursultanov
TI  - Description of interpolation spaces for local Morrey-type spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 52
EP  - 62
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a3/
LA  - ru
ID  - TM_2010_269_a3
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A E. D. Nursultanov
%T Description of interpolation spaces for local Morrey-type spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 52-62
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a3/
%G ru
%F TM_2010_269_a3
V. I. Burenkov; E. D. Nursultanov. Description of interpolation spaces for local Morrey-type spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 52-62. http://geodesic.mathdoc.fr/item/TM_2010_269_a3/

[1] Adams D.R., “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl

[2] Blasco O., Ruiz A., Vega L., “Non interpolation in Morrey–Campanato and block spaces”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4., 28:1 (1999), 31–40 | MR | Zbl

[3] Burenkov V.I., Guliyev H.V., “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Stud. math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[4] Burenkov V.I., Guliyev H.V., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. and Appl. Math., 208 (2007), 280–301 | DOI | MR | Zbl

[5] Burenkov V.I., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[6] Burenkov V.I., Guliev V.S., Tararykova T.V., Sherbetchi A., “Neobkhodimye i dostatochnye usloviya ogranichennosti istinnykh singulyarnykh integralnykh operatorov v lokalnykh prostranstvakh tipa Morri”, DAN, 422:1 (2008), 11–14 | MR | Zbl

[7] Campanato S., Murthy M.K.V., “Una generalizzazione del teorema di Riesz–Thorin”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3., 19 (1965), 87–100 | MR | Zbl

[8] Chiarenza F., Frasca M., “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Mat. e Appl. Ser. 7., 7 (1987), 273–279 | MR | Zbl

[9] Chiarenza F., Ruiz A., “Uniform $L^2$-weighted Sobolev inequalities”, Proc. Amer. Math. Soc., 112 (1991), 53–64 | MR | Zbl

[10] Chanillo S., Sawyer E., “Unique continuation for $\Delta +v$ and the C. Fefferman–Phong class”, Trans. Amer. Math. Soc., 318 (1990), 275–300 | DOI | MR | Zbl

[11] Gilbert J.E., “Interpolation between weighted $L_p$-spaces”, Ark. mat., 10:2 (1972), 235–249 | DOI | MR | Zbl

[12] Mizuhara T., “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic analysis, ICM 90 Satell. Conf. Proc., ed. S. Igari, Springer, Tokyo, 1991, 183–189 | MR

[13] Morrey C.B., Jr., “On the solution of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[14] Nakai E., “Hardy–Littlewood maximal operator, singular integral operators and Riez potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[15] Peetre J., “On an interpolation theorem of Foiaş and Lions”, Acta sci. math., 25:3–4 (1964), 255–261 | MR | Zbl

[16] Peetre J., “On the theory of $\mathcal L_{p,\lambda }$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl

[17] Ruiz A., Vega L., “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation on Morrey spaces”, Publ. Mat. Barc., 39 (1995), 405–411 | DOI | MR | Zbl

[18] Stampacchia G., “$\mathcal L_{p,\lambda }$-spaces and interpolation”, Commun. Pure and Appl. Math., 17 (1964), 293–306 | DOI | MR | Zbl

[19] Stein E.M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87:1 (1958), 159–172 | DOI | MR | Zbl

[20] Taylor M.E., “Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations”, Commun. Part. Diff. Equat., 17 (1992), 1407–1456 | DOI | MR | Zbl