Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_269_a22, author = {B. V. Trushin}, title = {Continuity of embeddings of weighted {Sobolev} spaces in {Lebesgue} spaces on anisotropically irregular domains}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {271--289}, publisher = {mathdoc}, volume = {269}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a22/} }
TY - JOUR AU - B. V. Trushin TI - Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 271 EP - 289 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_269_a22/ LA - ru ID - TM_2010_269_a22 ER -
%0 Journal Article %A B. V. Trushin %T Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 271-289 %V 269 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_269_a22/ %G ru %F TM_2010_269_a22
B. V. Trushin. Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 271-289. http://geodesic.mathdoc.fr/item/TM_2010_269_a22/
[1] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 2-e izd. Novosibirsk: Izd-vo SO AN SSSR, 1962; 3-e izd. M.: Nauka, 1988. | MR
[2] Sobolev S.L., “O nekotorykh otsenkakh, otnosyaschikhsya k semeistvam funktsii, imeyuschikh proizvodnye, integriruemye s kvadratom”, DAN SSSR, 1:7 (1936), 267–270
[3] Sobolev S., “Ob odnoi teoreme funktsionalnogo analiza”, Mat. sb., 4:3 (1938), 471–497 | Zbl
[4] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[5] Reshetnyak Yu.G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl
[6] Goldshtein V.M., Reshetnyak Yu.G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR
[7] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR
[8] Buckley S., Koskela P., “Sobolev–Poincaré implies John”, Math. Res. Lett., 2 (1995), 577–593 | DOI | MR | Zbl
[9] Smith W., Stegenga D.A., “Hölder domains and Poincaré domains”, Trans. Amer. Math. Soc., 319 (1990), 67–100 | DOI | MR | Zbl
[10] Hajlasz P., Koskela P., “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc. Ser. 2, 58 (1998), 425–450 | DOI | MR | Zbl
[11] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Ztschr. Anal. und Anwend., 19:2 (2000), 369–380 | DOI | MR | Zbl
[12] Labutin D.A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Mat. zametki, 61:2 (1997), 201–219 | DOI | MR | Zbl
[13] Labutin D.A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227, 1999, 170–179 | MR | Zbl
[14] Besov O.V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl
[15] Labutin D.A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN, 232, 2001, 218–222 | MR | Zbl
[16] Mazya V.G., Poborchii S.V., Teoremy vlozheniya i prodolzheniya dlya funktsii v nelipshitsevykh oblastyakh, Izd-vo S.-Peterb. un-ta, SPb., 2006
[17] Trushin B.V., “Teoremy vlozheniya Soboleva dlya nekotorogo klassa anizotropnykh neregulyarnykh oblastei”, Tr. MIAN, 260, 2008, 297–319 | MR | Zbl
[18] Trushin B.V., “O neuluchshaemosti vesovykh teorem vlozheniya Soboleva dlya anizotropno neregulyarnykh oblastei”, Sovremennye problemy fundamentalnoi i prikladnoi matematiki, Sb. nauch. trudov, Izd-vo MFTI, M., 2009, 166–190
[19] Trushin B.V., “Vesovye teoremy vlozheniya Soboleva dlya nekotorogo klassa anizotropnykh neregulyarnykh oblastei”, Differentsialnye uravneniya, funktsionalnye prostranstva, teoriya priblizhenii, Tez. dokl. Mezhdunar. konf., posv. 100-letiyu so dnya rozhd. S.L. Soboleva, Novosibirsk, 2008, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2008, 212
[20] Kokilashvili V.M., Gabidzashvili M.A., “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i maksimalnykh funktsii”, DAN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl
[21] Gabidzashvili M.A., “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbil. mat. in-ta, 82 (1986), 25–36 | MR | Zbl
[22] Besov O.V., “Vlozhenie prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214, 1997, 25–58 | Zbl
[23] de Guzman M., “A covering lemma with applications to differentiability of measures and singular integral operators”, Stud. math., 34 (1970), 299–317 | MR | Zbl
[24] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978 | MR
[25] Besov O.V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Tr. MIAN, 232, 2001, 72–93 | MR | Zbl