Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 271-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our earlier publications, the domains satisfying the flexible $\sigma$-cone condition were classified with respect to an anisotropy parameter $\lambda$. In the present paper we establish the continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces in these classes of domains. For each class of domains with parameter $\lambda\ne(1,\dots,1)$, the theorems obtained are stronger than those in the general case of domains satisfying the flexible $\sigma$-cone condition.
@article{TM_2010_269_a22,
     author = {B. V. Trushin},
     title = {Continuity of embeddings of weighted {Sobolev} spaces in {Lebesgue} spaces on anisotropically irregular domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--289},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a22/}
}
TY  - JOUR
AU  - B. V. Trushin
TI  - Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 271
EP  - 289
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a22/
LA  - ru
ID  - TM_2010_269_a22
ER  - 
%0 Journal Article
%A B. V. Trushin
%T Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 271-289
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a22/
%G ru
%F TM_2010_269_a22
B. V. Trushin. Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 271-289. http://geodesic.mathdoc.fr/item/TM_2010_269_a22/

[1] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 2-e izd. Novosibirsk: Izd-vo SO AN SSSR, 1962; 3-e izd. M.: Nauka, 1988. | MR

[2] Sobolev S.L., “O nekotorykh otsenkakh, otnosyaschikhsya k semeistvam funktsii, imeyuschikh proizvodnye, integriruemye s kvadratom”, DAN SSSR, 1:7 (1936), 267–270

[3] Sobolev S., “Ob odnoi teoreme funktsionalnogo analiza”, Mat. sb., 4:3 (1938), 471–497 | Zbl

[4] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[5] Reshetnyak Yu.G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[6] Goldshtein V.M., Reshetnyak Yu.G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[7] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[8] Buckley S., Koskela P., “Sobolev–Poincaré implies John”, Math. Res. Lett., 2 (1995), 577–593 | DOI | MR | Zbl

[9] Smith W., Stegenga D.A., “Hölder domains and Poincaré domains”, Trans. Amer. Math. Soc., 319 (1990), 67–100 | DOI | MR | Zbl

[10] Hajlasz P., Koskela P., “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc. Ser. 2, 58 (1998), 425–450 | DOI | MR | Zbl

[11] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Ztschr. Anal. und Anwend., 19:2 (2000), 369–380 | DOI | MR | Zbl

[12] Labutin D.A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Mat. zametki, 61:2 (1997), 201–219 | DOI | MR | Zbl

[13] Labutin D.A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227, 1999, 170–179 | MR | Zbl

[14] Besov O.V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl

[15] Labutin D.A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN, 232, 2001, 218–222 | MR | Zbl

[16] Mazya V.G., Poborchii S.V., Teoremy vlozheniya i prodolzheniya dlya funktsii v nelipshitsevykh oblastyakh, Izd-vo S.-Peterb. un-ta, SPb., 2006

[17] Trushin B.V., “Teoremy vlozheniya Soboleva dlya nekotorogo klassa anizotropnykh neregulyarnykh oblastei”, Tr. MIAN, 260, 2008, 297–319 | MR | Zbl

[18] Trushin B.V., “O neuluchshaemosti vesovykh teorem vlozheniya Soboleva dlya anizotropno neregulyarnykh oblastei”, Sovremennye problemy fundamentalnoi i prikladnoi matematiki, Sb. nauch. trudov, Izd-vo MFTI, M., 2009, 166–190

[19] Trushin B.V., “Vesovye teoremy vlozheniya Soboleva dlya nekotorogo klassa anizotropnykh neregulyarnykh oblastei”, Differentsialnye uravneniya, funktsionalnye prostranstva, teoriya priblizhenii, Tez. dokl. Mezhdunar. konf., posv. 100-letiyu so dnya rozhd. S.L. Soboleva, Novosibirsk, 2008, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2008, 212

[20] Kokilashvili V.M., Gabidzashvili M.A., “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i maksimalnykh funktsii”, DAN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl

[21] Gabidzashvili M.A., “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbil. mat. in-ta, 82 (1986), 25–36 | MR | Zbl

[22] Besov O.V., “Vlozhenie prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214, 1997, 25–58 | Zbl

[23] de Guzman M., “A covering lemma with applications to differentiability of measures and singular integral operators”, Stud. math., 34 (1970), 299–317 | MR | Zbl

[24] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978 | MR

[25] Besov O.V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Tr. MIAN, 232, 2001, 72–93 | MR | Zbl