Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 271-289

Voir la notice de l'article provenant de la source Math-Net.Ru

In our earlier publications, the domains satisfying the flexible $\sigma$-cone condition were classified with respect to an anisotropy parameter $\lambda$. In the present paper we establish the continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces in these classes of domains. For each class of domains with parameter $\lambda\ne(1,\dots,1)$, the theorems obtained are stronger than those in the general case of domains satisfying the flexible $\sigma$-cone condition.
@article{TM_2010_269_a22,
     author = {B. V. Trushin},
     title = {Continuity of embeddings of weighted {Sobolev} spaces in {Lebesgue} spaces on anisotropically irregular domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--289},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a22/}
}
TY  - JOUR
AU  - B. V. Trushin
TI  - Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 271
EP  - 289
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a22/
LA  - ru
ID  - TM_2010_269_a22
ER  - 
%0 Journal Article
%A B. V. Trushin
%T Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 271-289
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a22/
%G ru
%F TM_2010_269_a22
B. V. Trushin. Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 271-289. http://geodesic.mathdoc.fr/item/TM_2010_269_a22/