Sharpening of the estimates for relative widths of classes of differentiable functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 242-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

We improve the earlier obtained upper estimates for the least value of the coefficient $M$ for which the Kolmogorov widths $d_n(W_C^r,C)$ of the function class $W_C^r$ are equal to the relative widths $K_n(W_C^r,MW_C^j,C)$ of the class $W_C^r$ with respect to the class $MW_C^j$, $j$.
@article{TM_2010_269_a19,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Sharpening of the estimates for relative widths of classes of differentiable functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {242--253},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a19/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - Sharpening of the estimates for relative widths of classes of differentiable functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 242
EP  - 253
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a19/
LA  - ru
ID  - TM_2010_269_a19
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T Sharpening of the estimates for relative widths of classes of differentiable functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 242-253
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a19/
%G ru
%F TM_2010_269_a19
Yu. N. Subbotin; S. A. Telyakovskii. Sharpening of the estimates for relative widths of classes of differentiable functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 242-253. http://geodesic.mathdoc.fr/item/TM_2010_269_a19/

[1] Kolmogoroff A., “Über die beste Annäherung von Funkitionen einer gegebenen Funktionenklasse”, Ann. Math., 37 (1936), 107–110 | DOI | MR | Zbl

[2] Konovalov V.N., “Otsenki poperechnikov tipa Kolmogorova dlya klassov differentsiruemykh periodicheskikh funktsii”, Mat. zametki, 35:3 (1984), 369–380 | MR | Zbl

[3] Babenko V.F., “O nailuchshikh ravnomernykh priblizheniyakh splainami pri nalichii ogranichenii na ikh proizvodnye”, Mat. zametki, 50:6 (1991), 24–30 | MR | Zbl

[4] Subbotin Yu.N., Telyakovskii S.A., “Tochnye znacheniya otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Mat. zametki, 65:6 (1999), 871–879 | DOI | MR | Zbl

[5] Subbotin Yu.N., Telyakovskii S.A., “Ob otnositelnykh poperechnikakh klassov differentsiruemykh funktsii”, Tr. MIAN, 248, 2005, 250–261 | MR | Zbl

[6] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[7] Belov A.S., “O primerakh trigonometricheskikh ryadov s neotritsatelnymi chastnymi summami”, Mat. sb., 186:4 (1995), 21–46 | MR | Zbl

[8] Vietoris L., “Über das Vorzeichen gewisser trigonometrischer Summen”, Österreich. Akad. Wiss. Math.-natur. Kl. Sitzungsber. Abt. II., 167 (1958), 125–135 | Zbl

[9] Vietoris L., “Über das Vorzeichen gewisser trigonometrischer Summen. II”, Anzeiger Österreich. Akad. Wiss. Math.-natur. Kl., 10 (1959), 192–193