Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_269_a17, author = {S. I. Pohozaev}, title = {Blow-up of sign-changing solutions to quasilinear parabolic equations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {215--224}, publisher = {mathdoc}, volume = {269}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a17/} }
TY - JOUR AU - S. I. Pohozaev TI - Blow-up of sign-changing solutions to quasilinear parabolic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 215 EP - 224 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_269_a17/ LA - ru ID - TM_2010_269_a17 ER -
S. I. Pohozaev. Blow-up of sign-changing solutions to quasilinear parabolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 215-224. http://geodesic.mathdoc.fr/item/TM_2010_269_a17/
[1] Knops R.J., Levine H.A., Payne L.E., “Non-existence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics”, Arch. Rat. Mech. Anal., 55 (1974), 52–72 | DOI | MR | Zbl
[2] Levine H.A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=Au+\mathcal F(u)$”, Arch. Rat. Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl
[3] Levine H.A., “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=Au+\mathcal F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR | Zbl
[4] Levine H.A., “Some additional remarks on the nonexistence of global solutions to nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 138–146 | DOI | MR | Zbl
[5] Levine H.A., “Nonexistence of global weak solutions to nonlinear wave equations”, Improperly posed boundary value problems, Res. Notes Math., 1, Pitman, London, 1975, 94–104 | MR
[6] Levine H.A., Pucci P., Serrin J., “Some remarks on global nonexistence for nonautonomous abstract evolution equations”, Harmonic analysis and nonlinear differential equations, Contemp. Math., 208, Amer. Math. Soc., Providence (RI), 1997, 253–263 | DOI | MR | Zbl
[7] Levine H.A., Serrin J., “Global nonexistence theorems for quasilinear evolution equations with dissipation”, Arch. Rat. Mech. Anal., 137 (1997), 341–361 | DOI | MR | Zbl
[8] Levine H.A., Smith R.A., “A potential well theory for the wave equation with a nonlinear boundary condition”, J. reine und angew. Math., 374 (1987), 1–23 | MR | Zbl
[9] Ono K., “Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings”, J. Diff. Equat., 137 (1997), 273–301 | DOI | MR | Zbl
[10] Pucci P., Serrin J., “Asymptotic stability for nonautonomous dissipative wave systems”, Commun. Pure and Appl. Math., 49 (1996), 177–216 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Pucci P., Serrin J., “Local asymptotic stability for dissipative wave systems”, Israel J. Math., 104 (1998), 29–50 | DOI | MR | Zbl
[12] Pucci P., Serrin J., “Global nonexistence for abstract evolution equations with positive initial energy”, J. Diff. Equat., 150 (1998), 203–214 | DOI | MR | Zbl
[13] Mitidieri E., Pokhozhaev S.I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | Zbl