On Riemann ``nondifferentiable'' function and Schr\"odinger equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 193-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

The function $\psi:=\sum_{n\in\mathbb Z\setminus\{0\}}e^{\pi i(tn^2+2xn)}/(\pi in^2)$, $\{t,x\}\in\mathbb R^2$, is studied as a (generalized) solution of the Cauchy initial value problem for the Schrödinger equation. The real part of the restriction of $\psi$ on the line $x=0$, that is, the function $R:=\operatorname{Re}\psi|_{x=0}=\frac2\pi\sum_{n\in\mathbb N}\frac{\sin\pi n^2t}{n^2}$, $t\in\mathbb R$, was suggested by B. Riemann as a plausible example of a continuous but nowhere differentiable function. The points are established on $\mathbb R^2$ where the partial derivative $\frac{\partial\psi}{\partial t}$ exists and equals $-1$. These points constitute a countable set of open intervals parallel to the $x$-axis, with rational values of $t$. Thereby a natural extension of the well-known results of G. H. Hardy and J. Gerver is obtained (Gerver established that the derivative of the function $R$ still does exist and equals $-1$ at each rational point of the type $t=\frac aq$ where both numbers $a$ and $q$ are odd). A basic role is played by a representation of the differences of the function $\psi$ via Poisson's summation formula and the oscillatory Fresnel integral. It is also proved that the number $\frac34$ is the sharp value of the Lipschitz–Hölder exponent of the function $\psi$ in the variable $t$ almost everywhere on $\mathbb R^2$.
@article{TM_2010_269_a15,
     author = {K. I. Oskolkov and M. A. Chakhkiev},
     title = {On {Riemann} ``nondifferentiable'' function and {Schr\"odinger} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a15/}
}
TY  - JOUR
AU  - K. I. Oskolkov
AU  - M. A. Chakhkiev
TI  - On Riemann ``nondifferentiable'' function and Schr\"odinger equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 193
EP  - 203
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a15/
LA  - ru
ID  - TM_2010_269_a15
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%A M. A. Chakhkiev
%T On Riemann ``nondifferentiable'' function and Schr\"odinger equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 193-203
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a15/
%G ru
%F TM_2010_269_a15
K. I. Oskolkov; M. A. Chakhkiev. On Riemann ``nondifferentiable'' function and Schr\"odinger equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 193-203. http://geodesic.mathdoc.fr/item/TM_2010_269_a15/

[1] Weierstrass K., “Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen”, Mathematische Werke, Bd. 2, Mayer und Müller, Berlin, 1895, 71–74

[2] Hardy G.H., “Weierstrass's non-differentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl

[3] Gerver J., “The differentiability of the Riemann function at certain rational multiples of $\pi $”, Amer. J. Math., 92 (1970), 33–55 | DOI | MR | Zbl

[4] Gerver J., “More on the differentiability of the Riemann function”, Amer. J. Math., 93 (1971), 33–41 | DOI | MR | Zbl

[5] Gerver J.L., “On cubic lacunary Fourier series”, Trans. Amer. Math. Soc., 355 (2003), 4297–4347 | DOI | MR | Zbl

[6] Butzer P.L., Stark E.L., ““Riemann's example” of a continuous nondifferentiable function in the light of two letters (1865) of Cristoffel to Prym”, Bull. Soc. Math. Belg. A, 38 (1986), 45–73 | MR | Zbl

[7] Duistermaat J.J., “Self-similarity of “Riemann's nondifferentiable function””, Nieuw Arch. Wisk. Ser. 4, 9 (1991), 303–337 | MR | Zbl

[8] Holschneider M., Tchamitchian P., “Pointwise analysis of Riemann's “nondifferentiable” function”, Invent. math., 105 (1991), 157–175 | DOI | MR | Zbl

[9] Itatsu S., “Differentiability of Riemann's function”, Proc. Japan Acad. A, 57 (1981), 492–495 | DOI | MR | Zbl

[10] Jaffard S., “The spectrum of singularities of Riemann's function”, Rev. Mat. Iberoamer., 12 (1996), 441–460 | DOI | MR | Zbl

[11] Jaffard S., Meyer Y., Wavelet methods for pointwise regularity and local oscillations of functions, Mem. AMS, 123, no. 587, Amer. Math. Soc., Providence (RI), 1996 | MR

[12] Luther W., “The differentiability of Fourier gap series and “Riemann's example” of a continuous, nondifferentiable function”, J. Approx. Theory, 48 (1986), 303–321 | DOI | MR | Zbl

[13] Mohr E., “Wo ist die Riemannsche Funktion $\sum _{n=1}^\infty \frac {\sin n^2x}{n^2}$ nichtdifferenzierbar?”, Ann. Mat. Pura ed Appl., 123 (1980), 93–104 | DOI | MR | Zbl

[14] Neuenschwander E., “Riemann's example of a continuous, “nondifferentiable” function”, Math. Intell., 1 (1978), 40–44 | DOI | MR | Zbl

[15] Queffelec H., “Dérivabilité de certaines sommes de séries de Fourier lacunaires”, C. r. Acad. sci. Paris A, 273 (1971), 291–293 | MR | Zbl

[16] Oskolkov K.I., “A class of I.M. Vinogradov's series and its applications in harmonic analysis”, Progress in approximation theory: An international perspective, Springer, New York, 1992, 353–402 | DOI | MR | Zbl

[17] Oskolkov K.I., “Ryady I.M. Vinogradova v zadache Koshi dlya uravnenii tipa Shrëdingera”, Tr. MIAN, 200, 1991, 265–288 | Zbl

[18] Oskolkov K.I., “Ryady i integraly I.M. Vinogradova i ikh prilozheniya”, Tr. MIAN, 190, 1989, 186–221 | MR | Zbl

[19] Oskolkov K.I., “The Schrödinger density and the Talbot effect”, Approximation and probability, Banach Center Publ., 72, Inst. Math. Pol. Acad. Sci., Warsaw, 2006, 189–219 | DOI | MR | Zbl

[20] Arkhipov G.I., Oskolkov K.I., “Ob odnom spetsialnom trigonometricheskom ryade i ego prilozheniyakh”, Mat. sb., 134:2 (1987), 147–157 | MR | Zbl

[21] Oskolkov K.I., “On functional properties of incomplete Gaussian sums”, Canad. J. Math., 43 (1991), 182–212 | DOI | MR | Zbl

[22] Zygmund A., Trigonometric series, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl

[23] Khinchin A.Ya., Tsepnye drobi, 3-e izd., Fizmatgiz, M., 1961

[24] Falconer K.J., The geometry of fractal sets, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl