Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_269_a15, author = {K. I. Oskolkov and M. A. Chakhkiev}, title = {On {Riemann} ``nondifferentiable'' function and {Schr\"odinger} equation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {193--203}, publisher = {mathdoc}, volume = {269}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a15/} }
TY - JOUR AU - K. I. Oskolkov AU - M. A. Chakhkiev TI - On Riemann ``nondifferentiable'' function and Schr\"odinger equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 193 EP - 203 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_269_a15/ LA - ru ID - TM_2010_269_a15 ER -
K. I. Oskolkov; M. A. Chakhkiev. On Riemann ``nondifferentiable'' function and Schr\"odinger equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 193-203. http://geodesic.mathdoc.fr/item/TM_2010_269_a15/
[1] Weierstrass K., “Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen”, Mathematische Werke, Bd. 2, Mayer und Müller, Berlin, 1895, 71–74
[2] Hardy G.H., “Weierstrass's non-differentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl
[3] Gerver J., “The differentiability of the Riemann function at certain rational multiples of $\pi $”, Amer. J. Math., 92 (1970), 33–55 | DOI | MR | Zbl
[4] Gerver J., “More on the differentiability of the Riemann function”, Amer. J. Math., 93 (1971), 33–41 | DOI | MR | Zbl
[5] Gerver J.L., “On cubic lacunary Fourier series”, Trans. Amer. Math. Soc., 355 (2003), 4297–4347 | DOI | MR | Zbl
[6] Butzer P.L., Stark E.L., ““Riemann's example” of a continuous nondifferentiable function in the light of two letters (1865) of Cristoffel to Prym”, Bull. Soc. Math. Belg. A, 38 (1986), 45–73 | MR | Zbl
[7] Duistermaat J.J., “Self-similarity of “Riemann's nondifferentiable function””, Nieuw Arch. Wisk. Ser. 4, 9 (1991), 303–337 | MR | Zbl
[8] Holschneider M., Tchamitchian P., “Pointwise analysis of Riemann's “nondifferentiable” function”, Invent. math., 105 (1991), 157–175 | DOI | MR | Zbl
[9] Itatsu S., “Differentiability of Riemann's function”, Proc. Japan Acad. A, 57 (1981), 492–495 | DOI | MR | Zbl
[10] Jaffard S., “The spectrum of singularities of Riemann's function”, Rev. Mat. Iberoamer., 12 (1996), 441–460 | DOI | MR | Zbl
[11] Jaffard S., Meyer Y., Wavelet methods for pointwise regularity and local oscillations of functions, Mem. AMS, 123, no. 587, Amer. Math. Soc., Providence (RI), 1996 | MR
[12] Luther W., “The differentiability of Fourier gap series and “Riemann's example” of a continuous, nondifferentiable function”, J. Approx. Theory, 48 (1986), 303–321 | DOI | MR | Zbl
[13] Mohr E., “Wo ist die Riemannsche Funktion $\sum _{n=1}^\infty \frac {\sin n^2x}{n^2}$ nichtdifferenzierbar?”, Ann. Mat. Pura ed Appl., 123 (1980), 93–104 | DOI | MR | Zbl
[14] Neuenschwander E., “Riemann's example of a continuous, “nondifferentiable” function”, Math. Intell., 1 (1978), 40–44 | DOI | MR | Zbl
[15] Queffelec H., “Dérivabilité de certaines sommes de séries de Fourier lacunaires”, C. r. Acad. sci. Paris A, 273 (1971), 291–293 | MR | Zbl
[16] Oskolkov K.I., “A class of I.M. Vinogradov's series and its applications in harmonic analysis”, Progress in approximation theory: An international perspective, Springer, New York, 1992, 353–402 | DOI | MR | Zbl
[17] Oskolkov K.I., “Ryady I.M. Vinogradova v zadache Koshi dlya uravnenii tipa Shrëdingera”, Tr. MIAN, 200, 1991, 265–288 | Zbl
[18] Oskolkov K.I., “Ryady i integraly I.M. Vinogradova i ikh prilozheniya”, Tr. MIAN, 190, 1989, 186–221 | MR | Zbl
[19] Oskolkov K.I., “The Schrödinger density and the Talbot effect”, Approximation and probability, Banach Center Publ., 72, Inst. Math. Pol. Acad. Sci., Warsaw, 2006, 189–219 | DOI | MR | Zbl
[20] Arkhipov G.I., Oskolkov K.I., “Ob odnom spetsialnom trigonometricheskom ryade i ego prilozheniyakh”, Mat. sb., 134:2 (1987), 147–157 | MR | Zbl
[21] Oskolkov K.I., “On functional properties of incomplete Gaussian sums”, Canad. J. Math., 43 (1991), 182–212 | DOI | MR | Zbl
[22] Zygmund A., Trigonometric series, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl
[23] Khinchin A.Ya., Tsepnye drobi, 3-e izd., Fizmatgiz, M., 1961
[24] Falconer K.J., The geometry of fractal sets, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl