Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 143-149
Cet article a éte moissonné depuis la source Math-Net.Ru
Explicit formulas are obtained for the maximum possible values of the derivatives $f^{(k)}(x)$, $x\in(-1,1)$, $k\in\{0,1,\dots,r-1\}$, for functions $f$ that vanish together with their (absolutely continuous) derivatives of order up to $\le r-1$ at the points $\pm1$ and are such that $\|f^{(r)}\|_{L_2(-1,1)}\le1$. As a corollary, it is shown that the first eigenvalue $\lambda_{1,r}$ of the operator $(-D^2)^r$ with these boundary conditions is $\sqrt2(2r)!(1+O(1/r))$, $r\to\infty$.
@article{TM_2010_269_a10,
author = {G. A. Kalyabin},
title = {Sharp estimates for derivatives of functions in the {Sobolev} classes $\mathring W_2^r(-1,1)$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {143--149},
year = {2010},
volume = {269},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a10/}
}
TY - JOUR AU - G. A. Kalyabin TI - Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 143 EP - 149 VL - 269 UR - http://geodesic.mathdoc.fr/item/TM_2010_269_a10/ LA - ru ID - TM_2010_269_a10 ER -
G. A. Kalyabin. Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 143-149. http://geodesic.mathdoc.fr/item/TM_2010_269_a10/
[1] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[2] Magaril-Ilyaev G.G., Tikhomirov V.M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000
[3] Kalyabin G.A., “Nekotorye zadachi dlya prostranstv Soboleva na polupryamoi”, Tr. MIAN, 255, 2006, 161–169 | MR
[4] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl
[5] Böttcher A., Widom H., “From Toeplitz eigenvalues through Green's kernels to higher-order Wirtinger–Sobolev inequalities”, The extended field of operator theory, Oper. Theory Adv. and Appl., 171, Birkhäuser, Basel, 2007, 73–87 | DOI | MR
[6] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady: Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl