A biomechanical inactivation principle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 100-123

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper develops the mathematical side of a theory of inactivations in human biomechanics. This theory has been validated by practical experiments, including zero-gravity experiments. The theory mostly relies on Pontryagin's maximum principle on the one side and on transversality theory on the other side. It turns out that the periods of silence in the activation of muscles that are observed in practice during the motions of the arm can appear only if “something like the energy expenditure” is minimized. Conversely, minimization of a criterion taking into account the “energy expenditure” guaranties the presence of these periods of silence, for sufficiently short movements.
@article{TM_2010_268_a8,
     author = {J.-P. Gauthier and B. Berret and F. Jean},
     title = {A biomechanical inactivation principle},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {100--123},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a8/}
}
TY  - JOUR
AU  - J.-P. Gauthier
AU  - B. Berret
AU  - F. Jean
TI  - A biomechanical inactivation principle
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 100
EP  - 123
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a8/
LA  - en
ID  - TM_2010_268_a8
ER  - 
%0 Journal Article
%A J.-P. Gauthier
%A B. Berret
%A F. Jean
%T A biomechanical inactivation principle
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 100-123
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a8/
%G en
%F TM_2010_268_a8
J.-P. Gauthier; B. Berret; F. Jean. A biomechanical inactivation principle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 100-123. http://geodesic.mathdoc.fr/item/TM_2010_268_a8/