Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_268_a8, author = {J.-P. Gauthier and B. Berret and F. Jean}, title = {A biomechanical inactivation principle}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {100--123}, publisher = {mathdoc}, volume = {268}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a8/} }
J.-P. Gauthier; B. Berret; F. Jean. A biomechanical inactivation principle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 100-123. http://geodesic.mathdoc.fr/item/TM_2010_268_a8/
[1] Abend W., Bizzi E., Morasso P., “Human arm trajectory formation”, Brain, 105:2 (1982), 331–348 | DOI
[2] Atkeson C. G., Hollerbach J. M., “Kinematic features of unrestrained vertical arm movements”, J. Neurosci., 5:9 (1985), 2318–2330
[3] Ben-Itzhak S., Karniel A., “Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements”, Neural Comput., 20:3 (2008), 779–812 | DOI | MR | Zbl
[4] Bernstein N., The coordination and regulation of movements, Pergamon Press, Oxford, 1967
[5] Berret B., Darlot C., Jean F., Pozzo T., Papaxanthis C., Gauthier J.-P., “The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements”, PLoS Comput. Biol., 4:10 (2008), e1000194 | DOI | MR
[6] Berret B., Gauthier J.-P., Papaxanthis C., “How humans control arm movements”, Tr. MIAN, 261, 2008, 47–60 | MR
[7] Boessenkool J. J., Nijhof E. J., Erkelens C. J., “A comparison of curvatures of left and right hand movements in a simple pointing task”, Exp. Brain Res., 120:3 (1998), 369–376 | DOI
[8] Bonnard B., “Invariants in the feedback classification of nonlinear systems”, New trends in nonlinear control theory, Lect. Notes Control and Inf. Sci., 122, Springer, Berlin–Heidelberg, 1989, 13–22 | DOI | MR
[9] Boyd S., Ghaoui L. E., Feron E., Balakrishnan V., Linear matrix inequalities in system and control theory, SIAM Stud. Appl. Math., 15, SIAM, Philadelphia, PA, 1994 | MR | Zbl
[10] Clarke F. H., Optimization and nonsmooth analysis, J. Wiley and Sons, New York, 1983 | MR | Zbl
[11] Flash T., Hogan N., “The coordination of arm movements: an experimentally confirmed mathematical model”, J. Neurosci., 5:7 (1985), 1688–1703
[12] Gauthier J.-P., Kupka I., Deterministic observation theory and applications, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[13] Gauthier J.-P., Zakalyukin V., “On the one-step-bracket-generating motion planning problem”, J. Dyn. and Control Syst., 11 (2005), 215–235 | DOI | MR | Zbl
[14] Gentili R., Cahouet V., Papaxanthis C., “Motor planning of arm movements is direction-dependent in the gravity field”, Neuroscience, 145:1 (2007), 20–32 | DOI | MR
[15] Guigon E., Baraduc P., Desmurget M., “Computational motor control: redundancy and invariance”, J. Neurophysiol., 97:1 (2007), 331–347 | DOI
[16] Hallett M., Marsden C. D., “Ballistic flexion movements of the human thumb”, J. Physiol., 294 (1979), 33–50
[17] Harris C. M., Wolpert D. M., “Signal-dependent noise determines motor planning”, Nature, 394 (1998), 780–784 | DOI
[18] Hermens F., Gielen S., “Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements”, Exp. Brain Res., 159:3 (2004), 340–348 | DOI
[19] Hollerbach M. J., Flash T., “Dynamic interactions between limb segments during planar arm movement”, Biol. Cybern., 44:1 (1982), 67–77 | DOI
[20] Kalman R., When is a linear control system optimal?, Trans. ASME Ser. D J. Basic Eng., 86 (1964), 51–60 | DOI
[21] Lee E. B., Markus L., Foundations of optimal control theory, J. Wiley and Sons, New York, 1967 | MR | Zbl
[22] Morasso P., “Spatial control of arm movements”, Exp. Brain Res., 42:2 (1981), 223–227 | DOI
[23] Ng A. Y., Russell S., “Algorithms for inverse reinforcement learning”, Proc. 17th Intern. Conf. on Machine Learning, Morgan Kaufmann Publ., San Francisco, CA, 2000, 663–670
[24] Nishii J., Murakami T., “Energetic optimality of arm trajectory”, Proc. Intern. Conf. on Biomechanics of Man, Charles Univ., Prague, 2002, 30–33
[25] Nishikawa K. C., Murray S. T., Flanders M., Do arm postures vary with the speed of reaching?, J. Neurophysiol., 81:5 (1999), 2582–2586 | MR
[26] Papaxanthis C., Pozzo T., Schieppati M., “Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed”, Exp. Brain Res., 148:4 (2003), 498–503
[27] Papaxanthis C., Pozzo T., Stapley P., “Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man”, Neurosci. Lett., 253:2 (1998), 103–106 | DOI
[28] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[29] Soechting J. F., “Effect of target size on spatial and temporal characteristics of a pointing movement in man”, Exp. Brain Res., 54:1 (1984), 121–132 | DOI
[30] Soechting J. F., Lacquaniti F., “Invariant characteristics of a pointing movement in man”, J. Neurosci., 1:7 (1981), 710–720
[31] Todorov E., “Optimal control theory”, Bayesian brain: Probabilistic approaches to neural coding, eds. K. Doya et al., MIT Press, Cambridge, MA, 2007, Ch. 12, 269–298 | MR
[32] Uno Y., Kawato M., Suzuki R., “Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model”, Biol. Cybern., 61:2 (1989), 89–101 | DOI