The Pontryagin maximum principle and a~unified theory of dynamic optimization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 64-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Pontryagin maximum principle is the central result of optimal control theory. In the half-century since its appearance, the underlying theorem has been generalized, strengthened, extended, proved and reinterpreted in a variety of ways. We review in this article one of the principal approaches to obtaining the maximum principle in a powerful and unified context, focusing upon recent results that represent the culmination of over thirty years of progress using the methodology of nonsmooth analysis. We illustrate the novel features of this theory, as well as its versatility, by introducing a far-reaching new theorem that bears upon the currently active subject of mixed constraints in optimal control.
@article{TM_2010_268_a5,
     author = {F. Clarke},
     title = {The {Pontryagin} maximum principle and a~unified theory of dynamic optimization},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--75},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a5/}
}
TY  - JOUR
AU  - F. Clarke
TI  - The Pontryagin maximum principle and a~unified theory of dynamic optimization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 64
EP  - 75
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a5/
LA  - en
ID  - TM_2010_268_a5
ER  - 
%0 Journal Article
%A F. Clarke
%T The Pontryagin maximum principle and a~unified theory of dynamic optimization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 64-75
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a5/
%G en
%F TM_2010_268_a5
F. Clarke. The Pontryagin maximum principle and a~unified theory of dynamic optimization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 64-75. http://geodesic.mathdoc.fr/item/TM_2010_268_a5/

[1] Arutyunov A. V., Optimality conditions. Abnormal and degenerate problems, Kluwer, Dordrecht, 2000 | MR | Zbl

[2] Bliss G. A., Lectures on the calculus of variations, Univ. Chicago Press, Chicago, 1946 | MR | Zbl

[3] Clarke F. H., Necessary conditions for nonsmooth problems in optimal control and the calculus of variations, Doct. Thes., Univ. Washington, 1973

[4] Clarke F. H., “Necessary conditions for nonsmooth variational problems”, Optimal control theory and its applications, Lect. Notes Econ. and Math. Syst., 106, Springer, New York, 1974, 70–91 | DOI

[5] Clarke F. H., “Le principe du maximum avec un minimum d'hypothèses”, C. r. Acad. sci. Paris, 281 (1975), 281–283 | MR | Zbl

[6] Clarke F. H., “Maximum principles without differentiability”, Bull. Amer. Math. Soc., 81 (1975), 219–222 | DOI | MR | Zbl

[7] Clarke F. H., “The generalized problem of Bolza”, SIAM J. Control and Optim., 14 (1976), 682–699 | DOI | MR | Zbl

[8] Clarke F. H., “The maximum principle under minimal hypotheses”, SIAM J. Control and Optim., 14 (1976), 1078–1091 | DOI | MR | Zbl

[9] Clarke F., “The maximum principle in optimal control, then and now”, Control and Cybern., 34 (2005), 709–722 | MR | Zbl

[10] Clarke F., Necessary conditions in dynamic optimization, Mem. AMS, 173, no. 816, Amer. Math. Soc., Providence, RI, 2005 | MR

[11] Clarke F. H., de Pinho M. R., “The nonsmooth maximum principle”, Control and Cybern. (to appear)

[12] Clarke F. H., de Pinho M. R., “Optimal control problems with mixed constraints”, SIAM J. Control and Optim. (to appear)

[13] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl

[14] de Pinho M. R., Ferreira M. M., Fontes F., “Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems”, ESAIM Control Optim. and Calc. Var., 11 (2005), 614–632 | DOI | MR | Zbl

[15] de Pinho M. R., Vinter R. B., “An Euler–Lagrange inclusion for optimal control problems”, IEEE Trans. Autom. Control, 40 (1995), 1191–1198 | DOI | MR | Zbl

[16] de Pinho M. R., Vinter R. B., “Necessary conditions for optimal control problems involving nonlinear differential algebraic equations”, J. Math. Anal. and Appl., 212 (1997), 493–516 | DOI | MR | Zbl

[17] de Pinho M. R., Vinter R. B., Zheng H., “A maximum principle for optimal control problems with mixed constraints”, IMA J. Math. Control and Inf., 18 (2001), 189–205 | DOI | MR | Zbl

[18] Devdariani E. N., Ledyaev Yu. S., “Maximum principle for implicit control systems”, Appl. Math. and Optim., 40 (1999), 79–103 | DOI | MR | Zbl

[19] Dmitruk A. V., “Maximum principle for the general optimal control problem with phase and regular mixed constraints”, Comput. Math. and Modeling, 4 (1993), 364–377 | DOI | MR

[20] Dubovitskii A. Ya., Milyutin A. A., “Teoriya printsipa maksimuma”, Metody teorii ekstremalnykh zadach v ekonomike, Nauka, M., 1981, 6–47 | MR

[21] Hestenes M. R., Calculus of variations and optimal control theory, J. Wiley and Sons, New York, 1966 | MR | Zbl

[22] Ioffe A. D., Rockafellar R. T., “The Euler and Weierstrass conditions for nonsmooth variational problems”, Calc. Var. and Partial Diff. Equat., 4 (1996), 59–87 | DOI | MR | Zbl

[23] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[24] Milyutin A. A., Osmolovskii N. P., Calculus of variations and optimal control, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[25] Neustadt L. W., Optimization: A theory of necessary conditions, Princeton Univ. Press, Princeton, 1976 | MR | Zbl

[26] Páles Z., Zeidan V., “Optimal control problems with set-valued control and state constraints”, SIAM J. Optim., 14 (2003), 334–358 | DOI | MR | Zbl

[27] Stefani G., Zezza P., “Optimality conditions for a constrained control problem”, SIAM J. Control and Optim., 34 (1996), 635–659 | DOI | MR | Zbl

[28] Vinter R., Optimal control, Birkhäuser, Boston, 2000 | MR | Zbl

[29] Warga J., Optimal control of differential and functional equations, Acad. Press, New York, 1972 | MR | Zbl