The Pontryagin maximum principle and a~unified theory of dynamic optimization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 64-75

Voir la notice de l'article provenant de la source Math-Net.Ru

The Pontryagin maximum principle is the central result of optimal control theory. In the half-century since its appearance, the underlying theorem has been generalized, strengthened, extended, proved and reinterpreted in a variety of ways. We review in this article one of the principal approaches to obtaining the maximum principle in a powerful and unified context, focusing upon recent results that represent the culmination of over thirty years of progress using the methodology of nonsmooth analysis. We illustrate the novel features of this theory, as well as its versatility, by introducing a far-reaching new theorem that bears upon the currently active subject of mixed constraints in optimal control.
@article{TM_2010_268_a5,
     author = {F. Clarke},
     title = {The {Pontryagin} maximum principle and a~unified theory of dynamic optimization},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--75},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a5/}
}
TY  - JOUR
AU  - F. Clarke
TI  - The Pontryagin maximum principle and a~unified theory of dynamic optimization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 64
EP  - 75
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a5/
LA  - en
ID  - TM_2010_268_a5
ER  - 
%0 Journal Article
%A F. Clarke
%T The Pontryagin maximum principle and a~unified theory of dynamic optimization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 64-75
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a5/
%G en
%F TM_2010_268_a5
F. Clarke. The Pontryagin maximum principle and a~unified theory of dynamic optimization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 64-75. http://geodesic.mathdoc.fr/item/TM_2010_268_a5/