On the control of a~flock by a~leader
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 56-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The collective and individual behaviors of the elements of a set of identical units are investigated from the point of view of their response to a coordination signal broadcast by a leader. In terms of the model used here, we show that for such systems nonlinearity plays a critical role. A new method for establishing controllability of nonlinear, replicated systems is given. Similarly, stabilization also depends on high order nonlinear effects. For the purpose of stabilization, a distinction between odd order nonlinear terms and even order nonlinear terms plays a role.
@article{TM_2010_268_a4,
     author = {R. W. Brockett},
     title = {On the control of a~flock by a~leader},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a4/}
}
TY  - JOUR
AU  - R. W. Brockett
TI  - On the control of a~flock by a~leader
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 56
EP  - 63
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a4/
LA  - en
ID  - TM_2010_268_a4
ER  - 
%0 Journal Article
%A R. W. Brockett
%T On the control of a~flock by a~leader
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 56-63
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a4/
%G en
%F TM_2010_268_a4
R. W. Brockett. On the control of a~flock by a~leader. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 56-63. http://geodesic.mathdoc.fr/item/TM_2010_268_a4/

[1] Reynolds C. W., “Flocks, herds, and schools: A distributed behavioral model”, Computer Graphics, 21:4 (1987), 25–34 | DOI | MR

[2] Brockett R. W., “Optimal control of the Liouville equation”, Proc. Intern. Conf. on Complex Geometry and Related Fields, eds. Zhijie Chen et al., Amer. Math. Soc., Providence, RI, 2007, 23–35 | MR | Zbl

[3] Eren T., Belhumeur P. N., Morse A. S., “Closing ranks in vehicle formations based on rigidity”, Proc. 41st IEEE Conf. on Decision and Control, v. 3, IEEE Press, Piscataway, 2002, 2959–2964

[4] Olfati-Saber R., Murray R. M., “Graph rigidity and distributed formation stabilization of multi-vehicle systems”, Proc. 41st IEEE Conf. on Decision and Control, v. 3, IEEE Press, Piscataway, 2002, 2965–2971

[5] Eren T., Goldenberg D. K., Whitley W., Yang Y. R., Morse A. S., Anderson B. D. O., Belhumeur P. N., “Rigidity, computation, and randomization in network localization”, Proc. INFOCOM 2004, 23rd Annual Joint Conf. IEEE Computer and Commun. Soc. (Hong Kong, China, Mar. 2004), v. 4, IEEE Press, Piscataway, 2004, 2673–2684 | DOI

[6] Brockett R. W., “The global description of locally linear systems”, Feedback control of linear and nonlinear systems, Lect. Notes Control and Inf. Sci., 39, eds. D. Hinrichsen, A. Isidori, Springer, New York, 1982, 1–8 | DOI | MR

[7] Krasovskii N. N., Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay, Stanford Univ. Press, Stanford, CA, 1963 | MR | MR | Zbl

[8] LaSalle J. P., “Some extensions of Liapunov's second method”, IRE Trans. Circuit Theory, CT-7 (1960), 520–527 | DOI | MR

[9] Massera J. L., “On Liapounoff's conditions of stability”, Ann. Math. Ser. 2, 50 (1949), 705–721 | DOI | MR | Zbl