Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 231-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear control system which, under persistently acting disturbances, can be asymptotically driven to the origin by some non-anticipating strategy with infinite memory (such a strategy determines a value of control $u(t)$ at moment $t$ using complete information on the prehistory of disturbances until moment $t$). We demonstrate that this property is equivalent to the existence of a robust stabilizing (possibly discontinuous) feedback $k(x)$.
@article{TM_2010_268_a14,
     author = {Yuri S. Ledyaev and Richard B. Vinter},
     title = {Discontinuous feedback in nonlinear control: {Stabilization} under persistent disturbances},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {231--251},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a14/}
}
TY  - JOUR
AU  - Yuri S. Ledyaev
AU  - Richard B. Vinter
TI  - Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 231
EP  - 251
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a14/
LA  - ru
ID  - TM_2010_268_a14
ER  - 
%0 Journal Article
%A Yuri S. Ledyaev
%A Richard B. Vinter
%T Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 231-251
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a14/
%G ru
%F TM_2010_268_a14
Yuri S. Ledyaev; Richard B. Vinter. Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 231-251. http://geodesic.mathdoc.fr/item/TM_2010_268_a14/

[1] Artstein Z., “Stabilization with relaxed controls”, Nonlin. Anal. Theory, Meth. and Appl., 7 (1983), 1163–1173 | DOI | MR | Zbl

[2] Brockett R. W., “Asymptotic stability and feedback stabilization”, Differential geometric control theory, Progr. Math., 27, eds. R. W. Brockett, R. S. Millman, H. J. Sussmann, Birkhäuser, Boston, 1983, 181–191 | MR

[3] Clarke F. H., Optimization and nonsmooth analysis, Wiley-Intersci., New York, 1983 ; Classics Appl. Math., 5, 3rd ed., SIAM, Philadelphia, 1990 | MR | Zbl | MR | Zbl

[4] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl

[5] Clarke F. H., Ledyaev Yu. S., Wolenski P. R., “Proximal analysis and minimization principles”, J. Math. Anal. and Appl., 196 (1995), 722–735 | DOI | MR | Zbl

[6] Clarke F. H., Ledyaev Yu. S., Subbotin A. I., “The synthesis of universal feedback pursuit strategies in differential games”, SIAM J. Control and Optim., 35 (1997), 552–561 | DOI | MR | Zbl

[7] Clarke F. H., Ledyaev Yu. S., Subbotin A. I., Universal feedback control via proximal aiming in problems of control under disturbance and differential games, Rapport CRM-2386, Univ. Montréal, 1994

[8] Clarke F. H., Ledyaev Yu. S., Sontag E. D., Subbotin A. I., “Asymptotic controllability implies feedback stabilization”, IEEE Trans. Autom. Control, 42 (1997), 1394–1407 | DOI | MR | Zbl

[9] Clarke F. H., Ledyaev Yu. S., Rifford L., Stern R. J., “Feedback stabilization and Lyapunov functions”, SIAM J. Control and Optim., 39 (2000), 25–48 | DOI | MR | Zbl

[10] Coron J.-M., Rosier L., “A relation between continuous time-varying and discontinuous feedback stabilization”, J. Math. Syst., Estim., and Control, 4 (1994), 67–84 | MR | Zbl

[11] Elliott R. J., Kalton N. J., The existence of value in differential games, Mem. AMS, 126, Amer. Math. Soc., Providence, RI, 1972 | MR | Zbl

[12] Freeman R. A., Kokotović P. V., Robust nonlinear control design: State-space and Lyapunov techniques, Birkhäuser, Boston, 1996 | MR | Zbl

[13] Hahn W., Stability of motion, Springer, New York, 1967 | MR | Zbl

[14] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 ; Krasovskii N. N., Subbotin A. I., Jeux differentiels, Mir, M., 1979 ; Game-theoretical control problems, Springer, New York, 1988 | MR | Zbl | MR | MR | Zbl

[15] Ledyaev Yu. S., Mischenko E. F., “Ekstremalnye zadachi v teorii differentsialnykh igr”, Tr. MIAN, 185, 1988, 147–170 | MR | Zbl

[16] Ledyaev Yu. S., Sontag E. D., “A Lyapunov characterization of robust stabilization”, Nonlin. Anal. Theory Meth. and Appl., 37 (1999), 813–840 | DOI | MR | Zbl

[17] Ryan E. P., “On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback”, SIAM J. Control and Optim., 32 (1994), 1597–1604 | DOI | MR | Zbl

[18] Sontag E. D., “A Lyapunov-like characterization of asymptotic controllability”, SIAM J. Control and Optim., 21 (1983), 462–471 | DOI | MR | Zbl

[19] Sontag E. D., Sussmann H. J., “Remarks on continuous feedback”, Proc. IEEE Conf. on Decision and Control (Albuquerque, Dec. 1980), IEEE Publ., Piscataway, 1980, 916–921

[20] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhaüser, Boston, 1995 | MR

[21] Varaiya P. P., “On the existence of solutions to a differential game”, SIAM J. Control, 5 (1967), 153–162 | DOI | MR | Zbl

[22] Warga J., Optimal control of differential and functional equations, Acad. Press, New York, 1972 | MR | Zbl