Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 231-251

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear control system which, under persistently acting disturbances, can be asymptotically driven to the origin by some non-anticipating strategy with infinite memory (such a strategy determines a value of control $u(t)$ at moment $t$ using complete information on the prehistory of disturbances until moment $t$). We demonstrate that this property is equivalent to the existence of a robust stabilizing (possibly discontinuous) feedback $k(x)$.
@article{TM_2010_268_a14,
     author = {Yuri S. Ledyaev and Richard B. Vinter},
     title = {Discontinuous feedback in nonlinear control: {Stabilization} under persistent disturbances},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {231--251},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a14/}
}
TY  - JOUR
AU  - Yuri S. Ledyaev
AU  - Richard B. Vinter
TI  - Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 231
EP  - 251
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a14/
LA  - ru
ID  - TM_2010_268_a14
ER  - 
%0 Journal Article
%A Yuri S. Ledyaev
%A Richard B. Vinter
%T Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 231-251
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a14/
%G ru
%F TM_2010_268_a14
Yuri S. Ledyaev; Richard B. Vinter. Discontinuous feedback in nonlinear control: Stabilization under persistent disturbances. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 231-251. http://geodesic.mathdoc.fr/item/TM_2010_268_a14/