On synthesizing impulse controls and the theory of fast controls
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 215-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the theory of feedback control in the class of impulse-type inputs which allow higher derivatives of delta functions. We provide solutions based on Hamiltonian techniques in the dynamic programming form. Further we describe physically realizable approximations of the “ideal” impulse-type solutions by bounded functions which may also serve as “fast” feedback controls that solve the target control problem in arbitrarily small time.
@article{TM_2010_268_a13,
     author = {A. B. Kurzhanski},
     title = {On synthesizing impulse controls and the theory of fast controls},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--230},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a13/}
}
TY  - JOUR
AU  - A. B. Kurzhanski
TI  - On synthesizing impulse controls and the theory of fast controls
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 215
EP  - 230
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a13/
LA  - ru
ID  - TM_2010_268_a13
ER  - 
%0 Journal Article
%A A. B. Kurzhanski
%T On synthesizing impulse controls and the theory of fast controls
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 215-230
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a13/
%G ru
%F TM_2010_268_a13
A. B. Kurzhanski. On synthesizing impulse controls and the theory of fast controls. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 215-230. http://geodesic.mathdoc.fr/item/TM_2010_268_a13/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[3] Krasovskii N. N., “K teorii optimalnogo regulirovaniya”, PMM, 21:5 (1957), 670–677 | MR

[4] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[5] Branicky M. S., Borkar V. S., Mitter S. K., “A unified framework for hybrid control: Model and optimal control theory”, IEEE Trans. Autom. Control., 43:1 (1998), 31–45 | DOI | MR | Zbl

[6] Krasovskii N. N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[7] Neustadt L. W., “Optimization, a moment problem, and nonlinear programming”, J. Soc. Ind. Appl. Math. A Control., 2:1 (1964), 33–53 | DOI | MR | Zbl

[8] Dykhta V. A., Samsonyuk O. N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2003 | MR | Zbl

[9] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Diff. and Integral Equat., 8 (1995), 269–288 | MR | Zbl

[10] Bensoussan A., Lions J.-L., Contrôle impulsionnel et inéquations quasi variationelles, Dunod, Paris, 1982 | MR | Zbl

[11] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. 2, GTTI, M., 1945

[12] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282:2 (1984), 487–502 | DOI | MR | Zbl

[13] Fleming W. H., Soner H. M., Controlled Markov processes and viscosity solutions, Springer, New York, 1993 | MR | Zbl

[14] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., M.–Izhevsk, 2003

[15] Kurzhanskii A. B., Osipov Yu. S., “K upravleniyu lineinymi sistemami obobschennymi vozdeistviyami”, Dif. uravneniya, 5:8 (1969), 1360–1370 | Zbl

[16] Kurzhanskii A. B., “Optimalnye sistemy s impulsnymi upravleniyami”, Differentsialnye igry i zadachi upravleniya, UNTs AN SSSR, Sverdlovsk, 1975, 131–156

[17] Gusev M. I., “Optimalnoe upravlenie obobschennymi protsessami pri nevypuklykh fazovykh ogranicheniyakh”, Differentsialnye igry i zadachi upravleniya, UNTs AN SSSR, Sverdlovsk, 1975, 64–112 | MR

[18] Riesz F., Sz.-Nagy B., Leçons d'analyse fonctionnelle, Akad. Kiado, Budapest, 1972

[19] Balakrishnan A. V., Applied functional analysis, Springer, New York–Heidelberg–Berlin, 1976 | MR | Zbl

[20] Rokafellar P., Vypuklyi analiz, Mir, M., 1973

[21] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl

[22] Fan K., “Minimax theorems”, Proc. Nat. Acad. Sci. USA, 39:1 (1953), 42–47 | DOI | MR | Zbl

[23] Darin A. N., Kurzhanskii A. B., “O sinteze upravlenii v klasse obobschennykh funktsii vysshikh poryadkov”, Dif. uravneniya, 43:11 (2007), 1443–1453 | MR | Zbl

[24] Gelfand I. M., Shilov G. E., Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | Zbl

[25] Schwartz L., Théorie des distributions, v. 1, Hermann, Paris, 1950 | MR | Zbl

[26] Kurzhanski A. B., Daryin A. N., “Dynamic programming for impulse controls”, Annu. Rev. Control, 32 (2008), 213–227 | DOI