Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_268_a10, author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov}, title = {Buffer phenomenon in the spatially one-dimensional {Swift--Hohenberg} equation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {137--154}, publisher = {mathdoc}, volume = {268}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a10/} }
TY - JOUR AU - A. Yu. Kolesov AU - E. F. Mishchenko AU - N. Kh. Rozov TI - Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 137 EP - 154 VL - 268 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_268_a10/ LA - ru ID - TM_2010_268_a10 ER -
%0 Journal Article %A A. Yu. Kolesov %A E. F. Mishchenko %A N. Kh. Rozov %T Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 137-154 %V 268 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_268_a10/ %G ru %F TM_2010_268_a10
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 137-154. http://geodesic.mathdoc.fr/item/TM_2010_268_a10/
[1] Swift J., Hohenberg P. C., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15:1 (1977), 319–328 | DOI
[2] Haken H., Advanced synergetics, Springer, Berlin–New York, 1983 | MR
[3] Getling A. V., Konvektsiya Releya–Benara: Struktury i dinamika, Editorial URSS, M., 1999
[4] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nascent optical bistability”, Phys. Rev. A, 48:6 (1993), 4605–4609 | DOI
[5] Lega J., Moloney J. V., Newell A. C., “Swift–Hohenberg equation for lasers”, Phys. Rev. Lett., 73 (1994), 2978–2981 | DOI
[6] Kulagin N. E., Lerman L. M., Shmakova T. G., “O radialnykh resheniyakh uravneniya Svifta–Khoenberga”, Tr. MIAN, 261, 2008, 188–209 | MR | Zbl
[7] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005
[8] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teori nelineinykh kolebanii, Nauka, M., 1974 | MR
[9] Glensdorf P., Prigozhin I., Termodinamicheskaya teoriya struktury, ustoichivosti i fluktuatsii, Mir, M., 1973 | MR
[10] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR
[11] Arnold V. I., Dopolnitelnye glavy teori obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[12] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[13] Collet P., Eckmann J.-P., Instabilities and fronts in extended systems, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl
[14] Eckhaus W., Studies in non-linear stability theory, Springer, Berlin–New York, 1965 | MR | Zbl
[15] Pomeau Y., Zaleski S., “Wavelength selection in one-dimensional cellular structures”, J. Phys., 42:4 (1981), 515–528 | DOI | MR
[16] Kogelman S., DiPrima R. C., “Stability of spatially periodic supercritical flows in hydrodynamics”, Phys. Fluids, 13:1 (1970), 1–11 | DOI | MR | Zbl
[17] Pomeau Y., Manneville P., “Wavelength selection in cellular flows”, Phys. Lett. A, 75:4 (1980), 296–298 | DOI | MR