Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 137-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a boundary value problem for the spatially one-dimensional Swift–Hohenberg equation with zero Neumann boundary conditions at the endpoints of a finite interval. We establish that as the length $l$ of the interval increases while the supercriticality $\varepsilon$ is fixed and sufficiently small, the number of coexisting stable equilibrium states in this problem indefinitely increases; i.e., the well-known buffer phenomenon is observed. A similar result is obtained in the $2l$-periodic case.
@article{TM_2010_268_a10,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Buffer phenomenon in the spatially one-dimensional {Swift--Hohenberg} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {137--154},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a10/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 137
EP  - 154
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a10/
LA  - ru
ID  - TM_2010_268_a10
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 137-154
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a10/
%G ru
%F TM_2010_268_a10
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 137-154. http://geodesic.mathdoc.fr/item/TM_2010_268_a10/

[1] Swift J., Hohenberg P. C., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15:1 (1977), 319–328 | DOI

[2] Haken H., Advanced synergetics, Springer, Berlin–New York, 1983 | MR

[3] Getling A. V., Konvektsiya Releya–Benara: Struktury i dinamika, Editorial URSS, M., 1999

[4] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nascent optical bistability”, Phys. Rev. A, 48:6 (1993), 4605–4609 | DOI

[5] Lega J., Moloney J. V., Newell A. C., “Swift–Hohenberg equation for lasers”, Phys. Rev. Lett., 73 (1994), 2978–2981 | DOI

[6] Kulagin N. E., Lerman L. M., Shmakova T. G., “O radialnykh resheniyakh uravneniya Svifta–Khoenberga”, Tr. MIAN, 261, 2008, 188–209 | MR | Zbl

[7] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[8] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teori nelineinykh kolebanii, Nauka, M., 1974 | MR

[9] Glensdorf P., Prigozhin I., Termodinamicheskaya teoriya struktury, ustoichivosti i fluktuatsii, Mir, M., 1973 | MR

[10] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[11] Arnold V. I., Dopolnitelnye glavy teori obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[12] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[13] Collet P., Eckmann J.-P., Instabilities and fronts in extended systems, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl

[14] Eckhaus W., Studies in non-linear stability theory, Springer, Berlin–New York, 1965 | MR | Zbl

[15] Pomeau Y., Zaleski S., “Wavelength selection in one-dimensional cellular structures”, J. Phys., 42:4 (1981), 515–528 | DOI | MR

[16] Kogelman S., DiPrima R. C., “Stability of spatially periodic supercritical flows in hydrodynamics”, Phys. Fluids, 13:1 (1970), 1–11 | DOI | MR | Zbl

[17] Pomeau Y., Manneville P., “Wavelength selection in cellular flows”, Phys. Lett. A, 75:4 (1980), 296–298 | DOI | MR