Generating Series of Classes of Hilbert Schemes of Points on Orbifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 132-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of power structure over the Grothendieck ring of complex quasi-projective varieties is used for describing generating series of classes of Hilbert schemes of zero-dimensional subschemes (“fat points”) on complex orbifolds.
@article{TM_2009_267_a9,
     author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
     title = {Generating {Series} of {Classes} of {Hilbert} {Schemes} of {Points} on {Orbifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {132--137},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a9/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - I. Luengo
AU  - A. Melle-Hernández
TI  - Generating Series of Classes of Hilbert Schemes of Points on Orbifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 132
EP  - 137
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a9/
LA  - ru
ID  - TM_2009_267_a9
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A I. Luengo
%A A. Melle-Hernández
%T Generating Series of Classes of Hilbert Schemes of Points on Orbifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 132-137
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a9/
%G ru
%F TM_2009_267_a9
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. Generating Series of Classes of Hilbert Schemes of Points on Orbifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 132-137. http://geodesic.mathdoc.fr/item/TM_2009_267_a9/

[1] Cheah J., “On the cohomology of Hilbert schemes of points”, J. Alg. Geom., 5 (1996), 479–511 | MR | Zbl

[2] Cheah J., “The virtual Hodge polynomials of nested Hilbert schemes and related varieties”, Math. Ztschr., 227 (1998), 479–504 | DOI | MR | Zbl

[3] Göttsche L., “On the motive of the Hilbert scheme of points on a surface”, Math. Res. Lett., 8 (2001), 613–627 | DOI | MR | Zbl

[4] Grothendieck A., “Techniques de construction et théorèmes d'existence en géométrie algébrique. IV: Les schémas de Hilbert”, Séminaire Bourbaki, V. 6, Exp. 221, Soc. math. France, Paris, 1995, 249–276 | MR

[5] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11 (2004), 49–57 | DOI | MR | Zbl

[6] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points”, Mich. Math. J., 54 (2006), 353–359 | DOI | MR | Zbl

[7] Gusein-Zade S. M., Luengo I., Mele-Ernandez A., “O stepennoi strukture nad koltsom Grotendika mnogoobrazii i ee prilozheniyakh”, Tr. MIAN, 258, 2007, 58–69 | MR | Zbl

[8] Kapranov M., The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, E-print , 2000 arxiv: math.AG/0001005

[9] Knutson D., $\lambda$-Rings and the representation theory of the symmetric group, Lect. Notes Math., 308, Springer, Berlin, 1973 | MR | Zbl

[10] Moerdijk I., Pronk D. A., “Orbifolds, sheaves and groupoids”, $K$-Theory, 12:1 (1997), 3–21 | DOI | MR | Zbl