Bifurcations of Affine Equidistants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 65-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The bifurcations of so-called affine equidistants for a surface in three-space are classified and described geometrically. An affine equidistant is formed by the points dividing in a given ratio the segment with the endpoints lying on a given surface provided that the tangent planes to the surface at these endpoints are parallel. The most interesting case corresponds to segments near parabolic lines. All singularities turn out to be stable and simple.
@article{TM_2009_267_a4,
     author = {P. J. Giblin and J. P. Warder and V. M. Zakalyukin},
     title = {Bifurcations of {Affine} {Equidistants}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--81},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a4/}
}
TY  - JOUR
AU  - P. J. Giblin
AU  - J. P. Warder
AU  - V. M. Zakalyukin
TI  - Bifurcations of Affine Equidistants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 65
EP  - 81
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a4/
LA  - en
ID  - TM_2009_267_a4
ER  - 
%0 Journal Article
%A P. J. Giblin
%A J. P. Warder
%A V. M. Zakalyukin
%T Bifurcations of Affine Equidistants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 65-81
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a4/
%G en
%F TM_2009_267_a4
P. J. Giblin; J. P. Warder; V. M. Zakalyukin. Bifurcations of Affine Equidistants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 65-81. http://geodesic.mathdoc.fr/item/TM_2009_267_a4/

[1] Agrachev A. A., “Methods of control theory in nonholonomic geometry”, Proc. Intern. Congr. Math., V. 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1473–1483 | DOI | MR | Zbl

[2] Arnold V. I., Singularities of caustics and wave fronts, Math. and Appl., 62, Kluwer, Dordrecht, 2001 | MR | Zbl

[3] Bröcker Th., Differentiable germs and catastrophes, LMS Lect. Note Ser., 17, Cambridge Univ. Press, London, 1975 | MR | Zbl

[4] Bruce J. W., “A classification of 1-parameter families of map germs $\mathbb R^3,0\to\mathbb R^3,0$ with applications to condensation problems”, J. London Math. Soc., 33 (1986), 375–384 | DOI | MR | Zbl

[5] Bruce J. W., Giblin P. J., Curves and singularities, 2nd ed., Cambridge Univ. Press, Cambridge, 1992 | MR

[6] Buchin Su, Affine differential geometry, Sci. Press, Beijing; Gordon and Breach, New York, 1983 | MR

[7] Davydov A. A., Zakalyukin V. M., “Classification of relative minima singularities”, Geometry and topology of caustics – Caustics' 98, Banach Center Publ., 50, eds. S. Janeczko, V. M. Zakalyukin, Pol. Acad. Sci., Warsaw, 1999, 75–90 | MR | Zbl

[8] Giblin P. J., Holtom P. A., “The centre symmetry set”, Geometry and topology of caustics – Caustics' 98, Banach Center Publ., 50, eds. S. Janeczko, V. M. Zakalyukin, Pol. Acad. Sci., Warsaw, 1999, 91–105 | MR | Zbl

[9] Giblin P., Zakalyukin V. M., “Osobennosti semeistv khord”, Funkts. analiz i ego pril., 36:3 (2002), 63–68 | DOI | MR | Zbl

[10] Giblin P. J., Zakalyukin V. M., “Singularities of centre symmetry sets”, Proc. London Math. Soc., 90:1 (2005), 132–166 | DOI | MR | Zbl

[11] Giblin P. J., Zakalyukin V. M., “Recognition of centre symmetry set singularities”, Geom. Dedicata, 130 (2007), 43–58 | DOI | MR | Zbl

[12] Goryunov V. V., “Projections of generic surfaces with boundaries”, Theory of singularities and its applications, Adv. Sov. Math., 1, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1990, 157–200 | MR

[13] Holtom P. A., Local central symmetry for Euclidean plane curves, MSc Diss., Univ. Liverpool, Sept. 1997

[14] Janeczko S., “Bifurcations of the center of symmetry”, Geom. Dedicata, 60 (1996), 9–16 | DOI | MR | Zbl

[15] Mond D., “On the classification of germs of maps from $\mathbb R^2$ to $\mathbb R^3$”, Proc. London Math. Soc., 50 (1985), 333–369 | DOI | MR | Zbl

[16] Poénaru V., Singularités $C^\infty$ en présence de symétri, Lect. Notes Math., 510, Springer, Berlin, 1976. | MR | Zbl

[17] Warder J. P., Symmetries of curves and surfaces, PhD Thes., Univ. Liverpool

[18] Zakalyukin V. M., “Ogibayuschie semeistv volnovykh frontov i teoriya upravleniya”, Tr. MIAN, 209, 1995, 133–142 | MR | Zbl