Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_267_a4, author = {P. J. Giblin and J. P. Warder and V. M. Zakalyukin}, title = {Bifurcations of {Affine} {Equidistants}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {65--81}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a4/} }
TY - JOUR AU - P. J. Giblin AU - J. P. Warder AU - V. M. Zakalyukin TI - Bifurcations of Affine Equidistants JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 65 EP - 81 VL - 267 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_267_a4/ LA - en ID - TM_2009_267_a4 ER -
P. J. Giblin; J. P. Warder; V. M. Zakalyukin. Bifurcations of Affine Equidistants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 65-81. http://geodesic.mathdoc.fr/item/TM_2009_267_a4/
[1] Agrachev A. A., “Methods of control theory in nonholonomic geometry”, Proc. Intern. Congr. Math., V. 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1473–1483 | DOI | MR | Zbl
[2] Arnold V. I., Singularities of caustics and wave fronts, Math. and Appl., 62, Kluwer, Dordrecht, 2001 | MR | Zbl
[3] Bröcker Th., Differentiable germs and catastrophes, LMS Lect. Note Ser., 17, Cambridge Univ. Press, London, 1975 | MR | Zbl
[4] Bruce J. W., “A classification of 1-parameter families of map germs $\mathbb R^3,0\to\mathbb R^3,0$ with applications to condensation problems”, J. London Math. Soc., 33 (1986), 375–384 | DOI | MR | Zbl
[5] Bruce J. W., Giblin P. J., Curves and singularities, 2nd ed., Cambridge Univ. Press, Cambridge, 1992 | MR
[6] Buchin Su, Affine differential geometry, Sci. Press, Beijing; Gordon and Breach, New York, 1983 | MR
[7] Davydov A. A., Zakalyukin V. M., “Classification of relative minima singularities”, Geometry and topology of caustics – Caustics' 98, Banach Center Publ., 50, eds. S. Janeczko, V. M. Zakalyukin, Pol. Acad. Sci., Warsaw, 1999, 75–90 | MR | Zbl
[8] Giblin P. J., Holtom P. A., “The centre symmetry set”, Geometry and topology of caustics – Caustics' 98, Banach Center Publ., 50, eds. S. Janeczko, V. M. Zakalyukin, Pol. Acad. Sci., Warsaw, 1999, 91–105 | MR | Zbl
[9] Giblin P., Zakalyukin V. M., “Osobennosti semeistv khord”, Funkts. analiz i ego pril., 36:3 (2002), 63–68 | DOI | MR | Zbl
[10] Giblin P. J., Zakalyukin V. M., “Singularities of centre symmetry sets”, Proc. London Math. Soc., 90:1 (2005), 132–166 | DOI | MR | Zbl
[11] Giblin P. J., Zakalyukin V. M., “Recognition of centre symmetry set singularities”, Geom. Dedicata, 130 (2007), 43–58 | DOI | MR | Zbl
[12] Goryunov V. V., “Projections of generic surfaces with boundaries”, Theory of singularities and its applications, Adv. Sov. Math., 1, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1990, 157–200 | MR
[13] Holtom P. A., Local central symmetry for Euclidean plane curves, MSc Diss., Univ. Liverpool, Sept. 1997
[14] Janeczko S., “Bifurcations of the center of symmetry”, Geom. Dedicata, 60 (1996), 9–16 | DOI | MR | Zbl
[15] Mond D., “On the classification of germs of maps from $\mathbb R^2$ to $\mathbb R^3$”, Proc. London Math. Soc., 50 (1985), 333–369 | DOI | MR | Zbl
[16] Poénaru V., Singularités $C^\infty$ en présence de symétri, Lect. Notes Math., 510, Springer, Berlin, 1976. | MR | Zbl
[17] Warder J. P., Symmetries of curves and surfaces, PhD Thes., Univ. Liverpool
[18] Zakalyukin V. M., “Ogibayuschie semeistv volnovykh frontov i teoriya upravleniya”, Tr. MIAN, 209, 1995, 133–142 | MR | Zbl