Bifurcations of Affine Equidistants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 65-81

Voir la notice de l'article provenant de la source Math-Net.Ru

The bifurcations of so-called affine equidistants for a surface in three-space are classified and described geometrically. An affine equidistant is formed by the points dividing in a given ratio the segment with the endpoints lying on a given surface provided that the tangent planes to the surface at these endpoints are parallel. The most interesting case corresponds to segments near parabolic lines. All singularities turn out to be stable and simple.
@article{TM_2009_267_a4,
     author = {P. J. Giblin and J. P. Warder and V. M. Zakalyukin},
     title = {Bifurcations of {Affine} {Equidistants}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--81},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a4/}
}
TY  - JOUR
AU  - P. J. Giblin
AU  - J. P. Warder
AU  - V. M. Zakalyukin
TI  - Bifurcations of Affine Equidistants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 65
EP  - 81
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a4/
LA  - en
ID  - TM_2009_267_a4
ER  - 
%0 Journal Article
%A P. J. Giblin
%A J. P. Warder
%A V. M. Zakalyukin
%T Bifurcations of Affine Equidistants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 65-81
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a4/
%G en
%F TM_2009_267_a4
P. J. Giblin; J. P. Warder; V. M. Zakalyukin. Bifurcations of Affine Equidistants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 65-81. http://geodesic.mathdoc.fr/item/TM_2009_267_a4/