Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 280-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the cobordism theory of singular smooth maps there exist classifying spaces (analogues of Thom spectra) depending on the set of allowed singularity types. The so-called “key fibration” introduced by A. Szűcs connects these classifying spaces for different sets of allowed singularities. Here we prove the existence of such a fibration using a new, more simple and general argument than that of Szűcs. This makes it possible to extend the range of applications to some negative codimension maps.
@article{TM_2009_267_a21,
     author = {T. Terpai},
     title = {Fibration of {Classifying} {Spaces} in the {Cobordism} {Theory} of {Singular} {Maps}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {280--287},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a21/}
}
TY  - JOUR
AU  - T. Terpai
TI  - Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 280
EP  - 287
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a21/
LA  - en
ID  - TM_2009_267_a21
ER  - 
%0 Journal Article
%A T. Terpai
%T Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 280-287
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a21/
%G en
%F TM_2009_267_a21
T. Terpai. Fibration of Classifying Spaces in the Cobordism Theory of Singular Maps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 280-287. http://geodesic.mathdoc.fr/item/TM_2009_267_a21/

[1] Ekholm T., Szűcs A., Terpai T., “Cobordisms of fold maps and maps with a prescribed number of cusps”, Kyushu J. Math., 61:2 (2007), 395–414 | DOI | MR | Zbl

[2] Jänich K., “Symmetry properties of singularities of $C^\infty$-functions”, Math. Ann., 238 (1978), 147–156 | DOI | MR | Zbl

[3] Kalmár B., “Cobordism group of fold maps of oriented 3-manifolds into the plane”, Acta math. Hungar., 117:1–2 (2007), 1–25 | DOI | MR | Zbl

[4] Ohmoto T., Saeki O., Sakuma K., “Self-intersection class for singularities and its application to fold maps”, Trans. Amer. Math. Soc., 355 (2003), 3825–3838 | DOI | MR | Zbl

[5] Rimányi R., Szűcs A., “Pontrjagin–Thom-type construction for maps with singularities”, Topology, 37 (1998), 1177–1191 | DOI | MR | Zbl

[6] Rourke C., Sanderson B., “The compression theorem. I”, Geom. and Topol., 5 (2001), 399–429 | DOI | MR | Zbl

[7] Saeki O., “Fold maps on 4-manifolds”, Comment. Math. Helv., 78 (2003), 627–647 | DOI | MR | Zbl

[8] Szűcs A., “Cobordism groups of immersions of oriented manifolds”, Acta math. Hungar., 64:2 (1994), 191–230 | DOI | MR

[9] Szűcs A., “Cobordism of singular maps”, Geom. and Topol., 12 (2008), 2379–2452 ; arxiv: math/0612152v3 | DOI | MR

[10] Szűcs A., “Elimination of singularities by cobordism”, Real and complex singularities, Contemp. Math., 354, Amer. Math. Soc., Providence, RI, 2004, 301–324 | DOI | MR

[11] Terpai T., “Cobordisms of fold maps of $2k+2$-manifolds into $\mathbb R^{3k+2}$”, Geometry and topology of caustics – Caustics' 06, Banach Center Publ., 82, Pol. Acad. Sci. Inst. Math., Warsaw, 2008, 209–213 | DOI | MR | Zbl

[12] Wall C. T. C., “A second note on symmetry of singularities”, Bull. London Math. Soc., 12 (1980), 347–354 | DOI | MR | Zbl

[13] Yamamoto T., “Classification of singular fibres of stable maps of 4-manifolds into 3-manifolds and its applications”, J. Math. Soc. Japan, 58:3 (2006), 721–742 ; http://eprints.math.sci.hokudai.ac.jp/archive/00000073/ | DOI | MR | Zbl