Existence and Uniqueness of a~Stationary Distribution of a~Biological Community
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integral equation describing stationary distributions of a biological community, we point out conditions on its parameters under which this equation has a unique solution that satisfies necessary requirements for such a distribution.
@article{TM_2009_267_a2,
     author = {A. A. Davydov and V. I. Danchenko and M. Yu. Zvyagin},
     title = {Existence and {Uniqueness} of {a~Stationary} {Distribution} of {a~Biological} {Community}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a2/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - V. I. Danchenko
AU  - M. Yu. Zvyagin
TI  - Existence and Uniqueness of a~Stationary Distribution of a~Biological Community
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 46
EP  - 55
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a2/
LA  - ru
ID  - TM_2009_267_a2
ER  - 
%0 Journal Article
%A A. A. Davydov
%A V. I. Danchenko
%A M. Yu. Zvyagin
%T Existence and Uniqueness of a~Stationary Distribution of a~Biological Community
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 46-55
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a2/
%G ru
%F TM_2009_267_a2
A. A. Davydov; V. I. Danchenko; M. Yu. Zvyagin. Existence and Uniqueness of a~Stationary Distribution of a~Biological Community. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 46-55. http://geodesic.mathdoc.fr/item/TM_2009_267_a2/

[1] Law R., Dieckmann U., “Moment approximations of individual-based models”, The geometry of ecological interactions: Simplifying spatial complexity, eds. U. Dieckmann, R. Law, J. A. J. Metz, Cambridge Univ. Press, Cambridge, 2000, 252–270 | DOI

[2] Dieckmann U., Law R., “Relaxation projections and the method of moments”, The geometry of ecological interactions: Simplifying spatial complexity, eds. U. Dieckmann, R. Law, J. A. J. Metz, Cambridge Univ. Press, Cambridge, 2000, 412–455 | DOI

[3] Davydov A. A., Danchenko V. I., Dikman U., “Suschestvovanie i svoistva statsionarnykh prostranstvennykh raspredelenii biologicheskikh soobschestv”, Mezhdunar. konf. po differentsialnym uravneniyam i dinamicheskim sistemam, Tez. dokl. (Suzdal, 2008), Izd-vo Vladimir. gos. un-ta, Vladimir, 2008, 80–81

[4] Danchenko V. I., Davydov A. A., Nikitin A. A., “Ob integralnom uravnenii dlya statsionarnykh raspredelenii biologicheskikh soobschestv”, Problemy dinamicheskogo upravleniya, Sb. nauch. tr. fak-ta VMiK MGU, Vyp. 3, Izd. otd. fak-ta VMiK MGU, M., 2008, 32–45

[5] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR