On the Local Picard Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 138-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In his book SGA 2, A. Grothendieck developed Lefschetz theorems for the Picard group, the aim being to compare the Picard group of a projective variety with the one of a hyperplane section. An intermediate object is the Picard group of the formal completion along the hyperplane section. Here we proceed similarly but in the local complex analytic context. The use of the exponential sequence leads to analytic as well as topological depth conditions.
@article{TM_2009_267_a10,
     author = {H. A. Hamm},
     title = {On the {Local} {Picard} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {138--145},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a10/}
}
TY  - JOUR
AU  - H. A. Hamm
TI  - On the Local Picard Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 138
EP  - 145
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a10/
LA  - en
ID  - TM_2009_267_a10
ER  - 
%0 Journal Article
%A H. A. Hamm
%T On the Local Picard Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 138-145
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a10/
%G en
%F TM_2009_267_a10
H. A. Hamm. On the Local Picard Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 138-145. http://geodesic.mathdoc.fr/item/TM_2009_267_a10/

[1] Bǎnicǎ C., Stǎnǎşilǎ O., Algebraic methods in the global theory of complex spaces, Ed. Acad., Bucuresti; J. Wiley Sons, London, 1976 | MR

[2] Frisch J., Guenot G., “Prolongement de faisceaux analytiques cohérents”, Invent. math., 7 (1969), 321–343 | DOI | MR | Zbl

[3] Grothendieck A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, SGA 2, Masson Cie, Paris; North-Holland, Amsterdam, 1968 | MR | Zbl

[4] Grothendieck A., “Éléments de géométrie algébrique. I: Le langage des schémas (première partie)”, Publ. Math. IHES, 4 (1960), 5–228 | DOI | MR | Zbl

[5] Grothendieck A., “Eléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents (première partie)”, Publ. Math. IHES, 11 (1961), 5–167 | DOI

[6] Gunning R. C., Rossi H., Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, NJ, 1965 | MR | Zbl

[7] Hamm H. A., “On theorems of Zariski–Lefschetz type”, Contemp. Math., 475 (2008), 69–78 | DOI | MR | Zbl

[8] Hamm H. A., Lê D. T., “Rectified homotopical depth and Grothendieck conjectures”, Grothendieck Festschrift, V. 2, Progr. Math., 87, Birkhäuser, Boston, 1990, 311–351 | MR | Zbl

[9] Hamm H. A., Lê D. T., “Vanishing theorems for constructible sheaves. II”, Kodai Math. J., 21 (1998), 208–247 | DOI | MR | Zbl

[10] Siu Y.-T., “Extending coherent analytic sheaves”, Ann. Math. Ser. 2, 90 (1969), 108–143 | DOI | MR | Zbl

[11] Siu Y.-T., Techniques of extension of analytic objects, M. Dekker, New York, 1974 | MR | Zbl

[12] Siu Y.-T., “Analytic sheaves of local cohomology”, Trans. Amer. Math. Soc., 148 (1970), 347–366 | DOI | MR | Zbl

[13] Scheja G., “Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung”, Math. Ann., 157 (1964), 75–94 | DOI | MR | Zbl

[14] Trautmann G., “Ein Kontinuitätssatz für die Fortsetzung kohärenter analytischer Garben”, Arch. Math., 18 (1967), 188–196 | DOI | MR | Zbl

[15] Trautmann G., “Ein Endlichkeitssatz in der analytischen Geometrie”, Invent. math., 8 (1969), 143–174 | DOI | MR | Zbl