Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_267_a1, author = {M. Chaperon}, title = {Singularities in {Dynamics:} {A~Catastrophic} {Viewpoint}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {14--45}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a1/} }
M. Chaperon. Singularities in Dynamics: A~Catastrophic Viewpoint. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 14-45. http://geodesic.mathdoc.fr/item/TM_2009_267_a1/
[1] Abbaci B., “On a theorem of Philip Hartman”, C. r. Math. Acad. sci. Paris, 339 (2004), 781–786 | DOI | MR | Zbl
[2] Abraham R., Robbin J., Transversal mappings and flows, Benjamin, New York, 1967 | MR | Zbl
[3] Arnold V. I., Geometrical methods in the theory of ordinary differential equations, Springer, Berlin–Heidelberg–New York, 1983 | MR | Zbl
[4] Bosio F., Meersseman L., “Real quadrics in $\mathbb C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl
[5] Chaperon M., “Linéarisation des germes hyperboliques d'actions différentiables de $\mathbf R^k\times\mathbf Z^m$: le domaine de Poincaré”, C. r. Acad. sci. Paris A, 289 (1979), 325–328 | MR | Zbl
[6] Chaperon M., Géométrie différentielle et singularités de systèmes dynamiques, Astérisque, 138–139, Soc. math. France, Paris, 1986 | MR | Zbl
[7] Chaperon M., “$C^k$-conjugacy of holomorphic flows near a singularity”, Publ. Math. IHES, 64 (1987), 143–183 | MR
[8] Chaperon M., “Invariant manifolds revisited”, Tr. MIAN, 236, 2002, 428–446 | MR | Zbl
[9] Chaperon M., “Birth control in generalized Hopf bifurcations”, C. r. Math. Acad. sci. Paris, 345 (2007), 453–458 | DOI | MR | Zbl
[10] Chaperon M., López de Medrano S., Samaniego J. L., “On sub-harmonic bifurcations”, C. r. Math. Acad. sci. Paris, 340 (2005), 827–832 | DOI | MR | Zbl
[11] Chaperon M., López de Medrano S., “On the Hopf bifurcation for flows”, C. r. Math. Acad. sci. Paris, 340 (2005), 833–838 | DOI | MR | Zbl
[12] Chaperon M., López de Medrano S., “Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics”, C. r. Math. Acad. sci. Paris, 346 (2008), 1099–1102 | DOI | MR | Zbl
[13] Chaperon M., López de Medrano S., Generalized Hopf bifurcations, E-print , 2009 http://people.math.jussieu.fr/~chaperon/ChaperonLopez18.pdf
[14] Chenciner A., “Bifurcations de points fixes elliptiques. I: Courbes invariantes”, Publ. Math. IHES, 61 (1985), 67–127 | DOI | MR | Zbl
[15] Chenciner A., “Bifurcations de points fixes elliptiques. II: Orbites périodiques et ensembles de Cantor invariants”, Invent. math., 80 (1985), 81–106 | DOI | MR | Zbl
[16] Chenciner A., “Bifurcations de points fixes elliptiques. III: Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes”, Publ. Math. IHES, 66 (1988), 5–91 | DOI | MR | Zbl
[17] Hartman P., “On local homeomorphisms of Euclidean spaces”, Bol. Soc. Mat. Mexicana Ser. 2, 5 (1960), 220–241 | MR | Zbl
[18] Hirsch M. W., “Systems of differential equations which are competitive or cooperative. III: Competing species”, Nonlinearity, 1 (1988), 51–71 | DOI | MR | Zbl
[19] Hunt B. R., Sauer T., Yorke J. A., “Prevalence: A translation-invariant “almost every” on infinite-dimensional spaces”, Bull. Amer. Math. Soc., 27:2 (1992), 217–238 | DOI | MR | Zbl
[20] Iglesias-Zemmour P., Diffeology, http://math.huji.ac.il/~piz/Site/The Book/The Book.html
[21] Kammerer-Colin de Verdière M., “Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions”, C. r. Math. Acad. sci. Paris, 339 (2004), 625–629 | DOI | MR | Zbl
[22] Kammerer-Colin de Verdière M., Bifurcations de variétés invariantes, Thèse, Univ. Bourgogne, Dec. 2006
[23] López de Medrano S., “The space of Siegel leaves of a holomorphic vector field”, Holomorphic dynamics, Lect. Notes Math., 1345, Springer, Berlin, 1988, 233–245 | DOI | MR
[24] Nelson E., Topics in dynamics. I: Flows, Princeton Univ. Press, Princeton, NJ, 1969 | MR | Zbl
[25] Rodrigues H. M., Solà-Morales J., “An invertible contraction that is not $C^1$-linearizable”, C. r. Math. Acad. sci. Paris, 340 (2005), 847–850 | DOI | MR | Zbl
[26] Sard A., “The measure of the critical points of differentiable maps”, Bull. Amer. Math. Soc., 48 (1942), 883–890 | DOI | MR | Zbl
[27] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl
[28] Sternberg S., “On the structure of local homeomorphisms of Euclidean $n$-space. II”, Amer. J. Math., 80 (1958), 623–631 | DOI | MR | Zbl
[29] Thom R., “Un lemme sur les applications différentiables”, Bol. Soc. Mat. Mexicana Ser. 2, 1 (1956), 59–71 | MR | Zbl