Singularities in Dynamics: A~Catastrophic Viewpoint
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 14-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is about singularities of dynamical systems, a notion which is far from being as clear as for smooth maps. To give an idea of it, the beginning of “catastrophe theory” for dynamical systems (including very recent results) is developed, first in parallel with the well-known analogous theory for potentials, showing that dynamical versions of the Morse lemma with parameters already lead to difficult open problems. The second part of the paper makes it clear that the short-sighted view that singularities in dynamics are rest points and periodic orbits cannot resist serious investigation since many other specifically dynamical “singularities” are born from statics. A homage to René Thom, the whole article is written in the language of stratifications of function spaces – even though it deals with semi-local phenomena.
@article{TM_2009_267_a1,
     author = {M. Chaperon},
     title = {Singularities in {Dynamics:} {A~Catastrophic} {Viewpoint}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {14--45},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a1/}
}
TY  - JOUR
AU  - M. Chaperon
TI  - Singularities in Dynamics: A~Catastrophic Viewpoint
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 14
EP  - 45
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a1/
LA  - en
ID  - TM_2009_267_a1
ER  - 
%0 Journal Article
%A M. Chaperon
%T Singularities in Dynamics: A~Catastrophic Viewpoint
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 14-45
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a1/
%G en
%F TM_2009_267_a1
M. Chaperon. Singularities in Dynamics: A~Catastrophic Viewpoint. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 14-45. http://geodesic.mathdoc.fr/item/TM_2009_267_a1/

[1] Abbaci B., “On a theorem of Philip Hartman”, C. r. Math. Acad. sci. Paris, 339 (2004), 781–786 | DOI | MR | Zbl

[2] Abraham R., Robbin J., Transversal mappings and flows, Benjamin, New York, 1967 | MR | Zbl

[3] Arnold V. I., Geometrical methods in the theory of ordinary differential equations, Springer, Berlin–Heidelberg–New York, 1983 | MR | Zbl

[4] Bosio F., Meersseman L., “Real quadrics in $\mathbb C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[5] Chaperon M., “Linéarisation des germes hyperboliques d'actions différentiables de $\mathbf R^k\times\mathbf Z^m$: le domaine de Poincaré”, C. r. Acad. sci. Paris A, 289 (1979), 325–328 | MR | Zbl

[6] Chaperon M., Géométrie différentielle et singularités de systèmes dynamiques, Astérisque, 138–139, Soc. math. France, Paris, 1986 | MR | Zbl

[7] Chaperon M., “$C^k$-conjugacy of holomorphic flows near a singularity”, Publ. Math. IHES, 64 (1987), 143–183 | MR

[8] Chaperon M., “Invariant manifolds revisited”, Tr. MIAN, 236, 2002, 428–446 | MR | Zbl

[9] Chaperon M., “Birth control in generalized Hopf bifurcations”, C. r. Math. Acad. sci. Paris, 345 (2007), 453–458 | DOI | MR | Zbl

[10] Chaperon M., López de Medrano S., Samaniego J. L., “On sub-harmonic bifurcations”, C. r. Math. Acad. sci. Paris, 340 (2005), 827–832 | DOI | MR | Zbl

[11] Chaperon M., López de Medrano S., “On the Hopf bifurcation for flows”, C. r. Math. Acad. sci. Paris, 340 (2005), 833–838 | DOI | MR | Zbl

[12] Chaperon M., López de Medrano S., “Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics”, C. r. Math. Acad. sci. Paris, 346 (2008), 1099–1102 | DOI | MR | Zbl

[13] Chaperon M., López de Medrano S., Generalized Hopf bifurcations, E-print , 2009 http://people.math.jussieu.fr/~chaperon/ChaperonLopez18.pdf

[14] Chenciner A., “Bifurcations de points fixes elliptiques. I: Courbes invariantes”, Publ. Math. IHES, 61 (1985), 67–127 | DOI | MR | Zbl

[15] Chenciner A., “Bifurcations de points fixes elliptiques. II: Orbites périodiques et ensembles de Cantor invariants”, Invent. math., 80 (1985), 81–106 | DOI | MR | Zbl

[16] Chenciner A., “Bifurcations de points fixes elliptiques. III: Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes”, Publ. Math. IHES, 66 (1988), 5–91 | DOI | MR | Zbl

[17] Hartman P., “On local homeomorphisms of Euclidean spaces”, Bol. Soc. Mat. Mexicana Ser. 2, 5 (1960), 220–241 | MR | Zbl

[18] Hirsch M. W., “Systems of differential equations which are competitive or cooperative. III: Competing species”, Nonlinearity, 1 (1988), 51–71 | DOI | MR | Zbl

[19] Hunt B. R., Sauer T., Yorke J. A., “Prevalence: A translation-invariant “almost every” on infinite-dimensional spaces”, Bull. Amer. Math. Soc., 27:2 (1992), 217–238 | DOI | MR | Zbl

[20] Iglesias-Zemmour P., Diffeology, http://math.huji.ac.il/~piz/Site/The Book/The Book.html

[21] Kammerer-Colin de Verdière M., “Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions”, C. r. Math. Acad. sci. Paris, 339 (2004), 625–629 | DOI | MR | Zbl

[22] Kammerer-Colin de Verdière M., Bifurcations de variétés invariantes, Thèse, Univ. Bourgogne, Dec. 2006

[23] López de Medrano S., “The space of Siegel leaves of a holomorphic vector field”, Holomorphic dynamics, Lect. Notes Math., 1345, Springer, Berlin, 1988, 233–245 | DOI | MR

[24] Nelson E., Topics in dynamics. I: Flows, Princeton Univ. Press, Princeton, NJ, 1969 | MR | Zbl

[25] Rodrigues H. M., Solà-Morales J., “An invertible contraction that is not $C^1$-linearizable”, C. r. Math. Acad. sci. Paris, 340 (2005), 847–850 | DOI | MR | Zbl

[26] Sard A., “The measure of the critical points of differentiable maps”, Bull. Amer. Math. Soc., 48 (1942), 883–890 | DOI | MR | Zbl

[27] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl

[28] Sternberg S., “On the structure of local homeomorphisms of Euclidean $n$-space. II”, Amer. J. Math., 80 (1958), 623–631 | DOI | MR | Zbl

[29] Thom R., “Un lemme sur les applications différentiables”, Bol. Soc. Mat. Mexicana Ser. 2, 1 (1956), 59–71 | MR | Zbl