The van Kampen Obstruction and Its Relatives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 149-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review a cochain-free treatment of the classical van Kampen obstruction $\vartheta$ to embeddability of an $n$-polyhedron in $\mathbb R^{2n}$ and consider several analogs and generalizations of $\vartheta$, including an extraordinary lift of $\vartheta$, which has been studied by J.-P. Dax in the manifold case. The following results are obtained: (1) The $\mod2$ reduction of $\vartheta$ is incomplete, which answers a question of Sarkaria. (2) An odd-dimensional analog of $\vartheta$ is a complete obstruction to linkless embeddability ($=\,$“intrinsic unlinking”) of a given $n$-polyhedron in $\mathbb R^{2n+1}$. (3) A “blown-up” one-parameter version of $\vartheta$ is a universal type 1 invariant of singular knots, i.e., knots in $\mathbb R^3$ with a finite number of rigid transverse double points. We use it to decide in simple homological terms when a given integer-valued type 1 invariant of singular knots admits an integral arrow diagram ($=\,$Polyak–Viro) formula. (4) Settling a problem of Yashchenko in the metastable range, we find that every PL manifold $N$ nonembeddable in a given $\mathbb R^m$, $m\ge\frac{3(n+1)}2$, contains a subset $X$ such that no map $N\to\mathbb R^m$ sends $X$ and $N\setminus X$ to disjoint sets. (5) We elaborate on McCrory's analysis of the Zeeman spectral sequence to geometrically characterize "$k$-co-connected and locally $k$-co-connected" polyhedra, which we embed in $\mathbb R^{2n-k}$ for $k\frac{n-3}2$, thus extending the Penrose–Whitehead–Zeeman theorem.
@article{TM_2009_266_a8,
     author = {S. A. Melikhov},
     title = {The van {Kampen} {Obstruction} and {Its} {Relatives}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {149--183},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a8/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - The van Kampen Obstruction and Its Relatives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 149
EP  - 183
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a8/
LA  - en
ID  - TM_2009_266_a8
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T The van Kampen Obstruction and Its Relatives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 149-183
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a8/
%G en
%F TM_2009_266_a8
S. A. Melikhov. The van Kampen Obstruction and Its Relatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 149-183. http://geodesic.mathdoc.fr/item/TM_2009_266_a8/

[1] Akhmetiev P. M., “Pontryagin–Thom construction for approximation of mappings by embeddings”, Topol. and Appl., 140 (2004), 133–149 | DOI | MR | Zbl

[2] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39 (2007), 473–481 | DOI | MR | Zbl

[3] Barnett K., Farber M., Topology of configuration space of two particles on a graph. I, E-print , 2009 arXiv: 0903.2180 | MR

[4] Bausum D. R., “Embeddings and immersions of manifolds in Euclidean space”, Trans. Amer. Math. Soc., 213 (1975), 263–303 | DOI | MR | Zbl

[5] Becker J. C., “A relation between equivariant and non-equivariant stable cohomotopy”, Math. Ztschr., 199 (1988), 331–356 | DOI | MR | Zbl

[6] Bestvina M., Kapovich M., Kleiner B., “Van Kampen's embedding obstruction for discrete groups”, Invent. math., 150 (2002), 219–235 | DOI | MR | Zbl

[7] Böhme T., “On spatial representations of graphs”, Contemporary methods in graph theory, ed. R. Bodendieck, B.I.-Wissenschaftsverlag, Mannheim, 1990, 151–167 | MR

[8] Brahm M. V., “Approximating maps of 2-manifolds with zero-dimensional nondegeneracy sets”, Topol. and Appl., 45 (1992), 25–38 | DOI | MR | Zbl

[9] Bredon G. E., Sheaf theory, 2nd ed., Springer, New York, 1997 | MR | Zbl

[10] Brown K. S., Cohomology of groups, Springer, New York, 1982 | MR | Zbl

[11] Bryant J. L., “Approximating embeddings of polyhedra in codimension three”, Trans. Amer. Math. Soc., 170 (1972), 85–95 | DOI | MR | Zbl

[12] Bryant J. L., “Triangulation and general position of PL diagrams”, Topol. and Appl., 34 (1990), 211–233 | DOI | MR | Zbl

[13] Buoncristiano S., Rourke C. P., Sanderson B. J., A geometric approach to homology theory, LMS Lect. Note Ser., 18, Cambridge Univ. Press, Cambridge, 1976 | MR | Zbl

[14] Cornea O., Lupton G., Oprea J., Tanré D., Lusternik–Schnirelmann category, Math. Surv. and Monogr., 103, Amer. Math. Soc., Providence (RI), 2003 | DOI | MR | Zbl

[15] Crabb M. C., $\mathbb Z/2$-homotopy theory, LMS Lect. Note Ser., 44, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl

[16] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66 (1960), 416–441 | DOI | MR | Zbl

[17] de Longueville M., “Bier spheres and barycentric subdivision”, J. Comb. Theory A, 105 (2004), 355–357 | DOI | MR | Zbl

[18] Dax J.-P., “Étude homotopique des espaces de plongements”, Ann. sci. École Norm. Supér. Sér. 4, 5 (1972), 303–377 | MR | Zbl

[19] Eccles P. J., Grant M., “Bordism groups of immersions and classes represented by self-intersections”, Alg. and Geom. Topol., 7 (2007), 1081–1097 ; arXiv: math/0504152 | DOI | MR | Zbl

[20] Flores A., “Über $n$-dimensionale Komplexe, die im $R_{2n+1}$ absolut selbstverschlungen sind”, Ergebn. math. Kolloq., 6 (1935), 4–7 | Zbl

[21] Freedman M. H., Krushkal V. S., Teichner P., “Van Kampen's embedding obstruction is incomplete for 2-complexes in $\mathbb R^4$”, Math. Res. Lett., 1 (1994), 167–176 | DOI | MR | Zbl

[22] Gonçalves D., Skopenkov A., “Embeddings of homology equivalent manifolds with boundary”, Topol. and Appl., 153 (2006), 2026–2034 | DOI | MR | Zbl

[23] Grünbaum B., “Imbeddings of simplicial complexes”, Comment. Math. Helv., 44 (1969), 502–513 | DOI | MR | Zbl

[24] Haefliger A., Hirsch M. W., “Immersions in the stable range”, Ann. Math. Ser. 2, 75 (1962), 231–241 | DOI | MR | Zbl

[25] Harris L. S., “Intersections and embeddings of polyhedra”, Topology, 8 (1969), 1–26 | DOI | MR | Zbl

[26] Hatcher A., Quinn F., “Bordism invariants of intersections of submanifolds”, Trans. Amer. Math. Soc., 200 (1974), 327–344 | DOI | MR | Zbl

[27] Hauschild H., “Äquivariante Homotopie. I”, Arch. Math., 29 (1977), 158–165 | DOI | MR | Zbl

[28] Hu Sze-Tsen, “Isotopy invariants of topological spaces”, Proc. Roy. Soc. London A, 255 (1960), 331–366 | DOI | MR

[29] James I. M., “On category, in the sense of Lusternik–Schnirelmann”, Topology, 17 (1978), 331–348 | DOI | MR | Zbl

[30] Klein J. R., “On embeddings in the sphere”, Proc. Amer. Math. Soc., 133 (2005), 2783–2793 ; arXiv: math/0310236 | DOI | MR | Zbl

[31] Klein J. R., Williams B., “Homotopical intersection theory. II: Equivariance”, Math. Ztschr., 2009 (to appear); arXiv: 0803.0017

[32] Krushkal V. S., “Embedding obstructions and $4$-dimensional thickenings of 2-complexes”, Proc. Amer. Math. Soc., 128 (2000), 3683–3691 ; arXiv: math/0004058 | DOI | MR | Zbl

[33] Kosniowski Cz., “Equivariant cohomology and stable cohomotopy”, Math. Ann., 210 (1974), 83–104 | DOI | MR | Zbl

[34] Lovász L., Schrijver A., “A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs”, Proc. Amer. Math. Soc., 126 (1998), 1275–1285 | DOI | MR | Zbl

[35] Manturov V. O., “Dokazatelstvo gipotezy V. A. Vasileva o planarnosti singulyarnykh zatseplenii”, Izv. RAN. Ser. mat., 69:5 (2005), 169–178 | DOI | MR | Zbl

[36] Massey W. S., Rolfsen D., “Homotopy classification of higher dimensional links”, Indiana Univ. Math. J., 34 (1985), 375–391 | DOI | MR | Zbl

[37] Matoušek J., Using the Borsuk–Ulam theorem, Springer, Berlin, 2003 | MR

[38] Matoušek J., Tancer M., Wagner U., Hardness of embedding simplicial complexes in $\mathbb R^d$, E-print , 2008 arXiv: 0807.0336

[39] May J. P., Equivariant homotopy and cohomology theory, CBMS Reg. Conf. Ser. Math., 91, Amer. Math. Soc., Providence (RI), 1996 | MR | Zbl

[40] McCrory C., “Cobordism operations and singularities of maps”, Bull. Amer. Math. Soc., 82 (1976), 281–283 | DOI | MR | Zbl

[41] McCrory C., “A characterization of homology manifolds”, J. London Math. Soc., 16 (1977), 149–159 | DOI | MR | Zbl

[42] McCrory C., “Zeeman's filtration of homology”, Trans. Amer. Math. Soc., 250 (1979), 147–166 | DOI | MR | Zbl

[43] Melikhov S. A., “Izotopicheskaya i nepreryvnaya realizuemost otobrazhenii v metastabilnom range”, Mat. sb., 195:7 (2004), 71–104 | DOI | MR | Zbl

[44] Melikhov S. A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Tr. MIAN, 247, 2004, 159–181 ; arXiv: math/0305158 | MR | Zbl

[45] Melikhov S. A., Review of V. A. Vassiliev's paper "First-order invariants and first-order cohomology for spaces of embeddings of self-intersecting curves in $\mathbb R^n$", Math. Rev. MR2179414 (2007i:57014), 3 pp. | MR

[46] Melikhov S. A., Shchepin E. V., The telescope approach to embeddability of compacta, E-print , 2006 arXiv: math/0612085

[47] Meyer D. M., “$\mathbb Z/p$-equivariant maps between lens spaces and spheres”, Math. Ann., 312 (1998), 197–214 | DOI | MR | Zbl

[48] Nikkuni R., “The second skew-symmetric cohomology group and spatial embeddings of graphs”, J. Knot Theory and Ramif., 9 (2000), 387–411 | DOI | MR | Zbl

[49] Repovš D., Rosicki W., Zastrow A., Željko M., Constructing near-embeddings of codimension one manifolds with countable dense singular sets, E-print , 2008 arXiv: 0803.4251

[50] Repovš D., Skopenkov A. B., “A deleted product criterion for approximability of maps by embeddings”, Topol. and Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[51] Robertson N., Seymour P., Thomas R., “Sachs' linkless embedding conjecture”, J. Comb. Theory B, 64 (1995), 185–227 | DOI | MR | Zbl

[52] Rosen R. H., “Decomposing 3-space into circles and points”, Proc. Amer. Math. Soc., 11 (1960), 918–928 | DOI | MR

[53] Rourke C., Sanderson B., “Homology stratifications and intersection homology”, Proc. Kirbyfest (Berkeley, CA, USA, June 22–26, 1998), Geom. and Topol. Monogr., 2, Geom. and Topol. Publ., Coventry, 1999, 455–472 | DOI | MR | Zbl

[54] Sarkaria K. S., “Embedding and unknotting of some polyhedra”, Proc. Amer. Math. Soc., 100 (1987), 201–203 | DOI | MR | Zbl

[55] Sarkaria K. S., “A one-dimensional Whitney trick and Kuratowski's graph planarity criterion”, Israel J. Math., 73 (1991), 79–89 | DOI | MR | Zbl

[56] Shapiro A., “Obstructions to the embedding of a complex in a Euclidean space. I: The first obstruction”, Ann. Math. Ser. 2, 66 (1957), 256–269 | DOI | MR | Zbl

[57] Shinjo R., Taniyama K., “Homology classification of spatial graphs by linking numbers and Simon invariants”, Topol. and Appl., 134 (2003), 53–67 | DOI | MR | Zbl

[58] Skopenkov A., “Embedding and knotting of manifolds in Euclidean spaces”, Surveys in contemporary mathematics, LMS Lect. Note Ser., 347, eds. N. Young, Y. Choi, Cambridge Univ. Press, Cambridge, 2008, 248–342 ; arXiv: math/0604045 | MR | Zbl

[59] Skopenkov A., “A new invariant and parametric connected sum of embeddings”, Fund. math., 197 (2007), 253–269 ; arXiv: math/0509621 | DOI | MR | Zbl

[60] Skopenkov M., “Embedding products of graphs into Euclidean spaces”, Fund. math., 179 (2003), 191–198 ; arXiv: 0808.1199 | DOI | MR | Zbl

[61] Skopenkov M., “On approximability by embeddings of cycles in the plane”, Topol. and Appl., 134 (2003), 1–22 ; arXiv: 0808.1187 | DOI | MR | Zbl

[62] Stolz S., “The level of real projective spaces”, Comment. Math. Helv., 64 (1989), 661–674 | DOI | MR | Zbl

[63] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. Mosk. mat. o-va, 10, 1961, 217–272 ; 11, 1962, 99–126 | MR | Zbl

[64] Taniyama K., “Homology classification of spatial embeddings of a graph”, Topol. and Appl., 65 (1995), 205–228 | DOI | MR | Zbl

[65] Taniyama K., “Higher dimensional links in a simplicial complex embedded in a sphere”, Pacif. J. Math., 194 (2000), 465–467 | DOI | MR | Zbl

[66] Ummel B. R., “Some examples relating the deleted product to imbeddability”, Proc. Amer. Math. Soc., 31 (1972), 307–311 | DOI | MR | Zbl

[67] van Kampen E. R., “Komplexe in euklidischen Räumen”, Abh. Math. Sem. Univ. Hamburg., 9 (1932), 72–78 | Zbl

[68] Vassiliev V. A., Complements of discriminants of smooth maps: Topology and applications, Rev. ed., Amer. Math. Soc., Providence (RI), 1994 | MR | MR | Zbl

[69] Vasilev V. A., “Invarianty i kogomologii pervogo poryadka dlya prostranstv vlozhenii samoperesekayuschikhsya krivykh v $\mathbb R^n$”, Izv. RAN. Ser. mat., 69:5 (2005), 3–52 | DOI | MR | Zbl

[70] Volovikov A. Yu., Schepin E. V., “Antipody i vlozheniya”, Mat. sb., 196:1 (2005), 3–32 | DOI | MR | Zbl

[71] Weber C., “Plongements de polyèdres dans le domaine métastable”, Comment. Math. Helv., 42 (1967), 1–27 | DOI | MR | Zbl

[72] Wu Tsen-Teh, “On the $\mod2$ imbedding classes of a triangulable compact manifold”, Sci. Record. New Ser., 2:3 (1958), 435–438 | MR | Zbl

[73] Wu Wen-Tsün, “On the realization of complexes in euclidean spaces. I”, Acta math. Sinica, 5 (1955), 505–552 ; “II”, 7 (1957), 79–101 ; “III”, 8 (1958), 79–94 ; “On the realization of complexes in euclidean spaces. I”, Sci. Sinica, 7 (1958), 251–297 ; “II”, 7 (1958), 365–387 ; “III”, 8 (1959), 133–150 ; “On the realization of complexes in euclidean spaces. I”, Selected works of Wen-Tsun Wu, World Sci., Hackensack (NJ), 2008, 23–69; “III”, 71–83 | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | MR

[74] Yaschenko I., Embedding a smooth compact manifold into $\mathbb R^n$, Problems from topology atlas. Topology atlas document # qaaa-04 , 1996 http://at.yorku.ca/q/a/a/a/04.htm

[75] Zeeman E. C., “Polyhedral $n$-manifolds. II: Embeddings”, Topology of 3-manifolds and related topics, ed. M. K. Fort (Jr.), Prentice-Hall, Englewood Cliffs (NJ), 1962, 64–70 | MR

[76] Cavicchioli A., Grasselli L., “Cohomological products and transversality”, Rend. Sem. Mat. Torino, 40:3 (1982), 115–125 | MR | Zbl

[77] Fenn R. A., Techniques of geometric topology, LMS Lect. Note Ser., 57, Cambridge Univ. Press, Cambridge, 1983 | MR | Zbl

[78] Fenn R., Sjerve D., “Geometric cohomology theory”, Contemp. Math., 20 (1983), 79–102 | DOI | MR | Zbl

[79] Grasselli L., “Subdivision and Poincaré duality”, Riv. Mat. Univ. Parma. Ser. 4, 9 (1983), 95–103 | MR | Zbl