Equivariant Almost Complex Structures on Quasitoric Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 140-148
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists an equivariant almost complex structure on any quasitoric manifold that admits a positive omniorientation. This gives an answer to the question raised by M. Davis and T. Januszkiewicz: Find a criterion for the existence of an equivariant almost complex structure on a quasitoric manifold in terms of its characteristic function.
@article{TM_2009_266_a7,
author = {A. A. Kustarev},
title = {Equivariant {Almost} {Complex} {Structures} on {Quasitoric} {Manifolds}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {140--148},
publisher = {mathdoc},
volume = {266},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a7/}
}
A. A. Kustarev. Equivariant Almost Complex Structures on Quasitoric Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 140-148. http://geodesic.mathdoc.fr/item/TM_2009_266_a7/