Equivariant Almost Complex Structures on Quasitoric Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 140-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists an equivariant almost complex structure on any quasitoric manifold that admits a positive omniorientation. This gives an answer to the question raised by M. Davis and T. Januszkiewicz: Find a criterion for the existence of an equivariant almost complex structure on a quasitoric manifold in terms of its characteristic function.
@article{TM_2009_266_a7,
     author = {A. A. Kustarev},
     title = {Equivariant {Almost} {Complex} {Structures} on {Quasitoric} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {140--148},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a7/}
}
TY  - JOUR
AU  - A. A. Kustarev
TI  - Equivariant Almost Complex Structures on Quasitoric Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 140
EP  - 148
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a7/
LA  - ru
ID  - TM_2009_266_a7
ER  - 
%0 Journal Article
%A A. A. Kustarev
%T Equivariant Almost Complex Structures on Quasitoric Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 140-148
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a7/
%G ru
%F TM_2009_266_a7
A. A. Kustarev. Equivariant Almost Complex Structures on Quasitoric Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 140-148. http://geodesic.mathdoc.fr/item/TM_2009_266_a7/

[1] Wu W.-T., “Sur les classes caractéristiques des structures fibrées sphériques”, Sur les espaces fibrés et les variétés feuilletées, Actual. sci. et ind., 1183, Hermann, Paris, 1952, 5–89 | MR

[2] Thomas E., “Complex structures on real vector bundles”, Amer. J. Math., 89 (1967), 887–908 | DOI | MR | Zbl

[3] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[4] Atiyah M. F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl

[5] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[6] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[7] Taubes C. H., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | DOI | MR | Zbl

[8] Panov T. E., “Rody Khirtsebrukha mnogoobrazii s deistviem tora”, Izv. RAN. Ser. mat., 65:3 (2001), 123–138 | DOI | MR | Zbl

[9] Feldman K. E., Hirzebruch genera of manifolds equipped with a Hamiltonian circle action, E-print , 2001 arXiv: math/0110028v2

[10] Bukhshtaber V. M., Panov T. E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[11] Buchstaber V. M., Panov T. E., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl