Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 127-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convex polytopes have interested mathematicians since very ancient times. At present, they occupy a central place in convex geometry, combinatorics, and toric topology and demonstrate the harmony and beauty of mathematics. This paper considers the problem of describing the $f$-vectors of simple flag polytopes, that is, simple polytopes in which any set of pairwise intersecting facets has nonempty intersection. We show that for each nestohedron corresponding to a connected building set, the $h$-polynomial is a descent-generating function for some class of permutations; we also prove Gal's conjecture on the nonnegativity of $\gamma$-vectors of flag polytopes for nestohedra constructed over complete bipartite graphs.
@article{TM_2009_266_a6,
     author = {N. Yu. Erokhovets},
     title = {Gal's {Conjecture} for {Nestohedra} {Corresponding} to {Complete} {Bipartite} {Graphs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {127--139},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a6/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 127
EP  - 139
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a6/
LA  - ru
ID  - TM_2009_266_a6
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 127-139
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a6/
%G ru
%F TM_2009_266_a6
N. Yu. Erokhovets. Gal's Conjecture for Nestohedra Corresponding to Complete Bipartite Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 127-139. http://geodesic.mathdoc.fr/item/TM_2009_266_a6/

[1] Bukhshtaber V. M., “Koltso prostykh mnogogrannikov i differentsialnye uravneniya”, Tr. MIAN, 263, 2008, 18–43 | MR

[2] Billera L. J., Lee C. W., “A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes”, J. Comb. Theory A, 31:3 (1981), 237–255 | DOI | MR | Zbl

[3] Bukhshtaber V. M., Panov T. E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[4] Brønsted A., An introduction to convex polytopes, Grad. Texts Math., 90, Springer, New York, 1983 | MR

[5] Davis M. W., Okun B., “Vanishing theorems and conjectures for the $\ell^2$-homology of right-angled Coxeter groups”, Geom. Topol., 5 (2001), 7–74 | DOI | MR | Zbl

[6] Gal S. R., “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete Comput. Geom., 34:2 (2005), 269–284 | DOI | MR | Zbl

[7] Grünbaum B., Convex polytopes, Pure and Appl. Math., 16, Intersci. Publ., New York, 1967 | MR

[8] McMullen P., “The numbers of faces of simplicial polytopes”, Israel J. Math., 9 (1971), 559–570 | DOI | MR | Zbl

[9] Postnikov A., Reiner V., Williams L., Faces of generalized permutohedra, E-print , 2007 arXiv: math/0609184v2 | MR

[10] Postnikov A., Permutohedra, associahedra, and beyond, E-print , 2005 arXiv: math/0507163v1 | MR

[11] Stanley R. P., “The number of faces of a simplicial convex polytope”, Adv. Math., 35:3 (1980), 236–238 | DOI | MR | Zbl

[12] Zelevinsky A., “Nested complexes and their polyhedral realizations”, Pure and Appl. Math. Quart., 2 (2006), 655–671 | DOI | MR | Zbl

[13] Ziegler G. M., Lectures on polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | MR | Zbl