Higher Commutators in the Loop Space Homology of $K$-Products
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 97-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of calculating the loop space homology for so-called polyhedral products defined by an arbitrary simplicial complex $K$. A presentation of this homology algebra is obtained from the homology of the complements of diagonal subspace arrangements, which, in turn, is calculated using an infinite resolution of the exterior Stanley–Reisner algebra. We get an explicit presentation of the loop homology algebra for polyhedral products for classes of simplicial complexes such as flag complexes and the duals of sequentially Cohen–Macaulay complexes in terms of higher commutator products. We give a construction for the iteration of higher products and discuss the relationship between this problem and problems in commutative algebra.
@article{TM_2009_266_a4,
     author = {N. E. Dobrinskaya},
     title = {Higher {Commutators} in the {Loop} {Space} {Homology} of $K${-Products}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a4/}
}
TY  - JOUR
AU  - N. E. Dobrinskaya
TI  - Higher Commutators in the Loop Space Homology of $K$-Products
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 97
EP  - 111
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a4/
LA  - ru
ID  - TM_2009_266_a4
ER  - 
%0 Journal Article
%A N. E. Dobrinskaya
%T Higher Commutators in the Loop Space Homology of $K$-Products
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 97-111
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a4/
%G ru
%F TM_2009_266_a4
N. E. Dobrinskaya. Higher Commutators in the Loop Space Homology of $K$-Products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 97-111. http://geodesic.mathdoc.fr/item/TM_2009_266_a4/