Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_266_a4, author = {N. E. Dobrinskaya}, title = {Higher {Commutators} in the {Loop} {Space} {Homology} of $K${-Products}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {97--111}, publisher = {mathdoc}, volume = {266}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a4/} }
N. E. Dobrinskaya. Higher Commutators in the Loop Space Homology of $K$-Products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 97-111. http://geodesic.mathdoc.fr/item/TM_2009_266_a4/
[1] Adams J. F., Hilton P. J., “On the chain algebra of a loop space”, Comment. Math. Helv., 30 (1956), 305–330 | DOI | MR | Zbl
[2] Anick D. J., “Connections between Yoneda and Pontrjagin algebras”, Algebraic topology (Aarhus, 1982), Lect. Notes Math., 1051, Springer, Berlin, 1984, 331–350 | DOI | MR
[3] Buchstaber V. M., Panov T. E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence (RI), 2002 | MR | Zbl
[4] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[5] Dobrinskaya N., Loops on polyhedral products and diagonal arrangements, E-print , 2009 arXiv: 0901.2871v1 | MR | Zbl
[6] Dobrinskaya N., Moment-angle complexes, Golodness and sequentially Cohen–Macaulay property, Preprint , 2009 http://www.few.vu.nl/~ndobrin/momentangleCM.pdf | Zbl
[7] Fröberg R., “Determination of a class of Poincaré series”, Math. scand., 37:1 (1975), 29–39 | MR | Zbl
[8] Fröberg R., “Koszul algebras”, Advances in commutative ring theory (Fez, Morocco, 1997), Lect. Notes Pure and Appl. Math., 205, M. Dekker, New York, 1999, 337–350 | MR | Zbl
[9] Lemaire J.-M., Algèbres connexes et homologie des espaces de lacets, Lect. Notes Math., 422, Springer, Berlin, 1974 | MR | Zbl
[10] Löfwall C., “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lect. Notes Math., 1183, Springer, Berlin, 1986, 291–338 | DOI | MR
[11] Panov T. E., Ray N., “Categorical aspects of toric topology”, Toric topology (Osaka, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence (RI), 2008, 293–322 | DOI | MR | Zbl
[12] Papadima S., Suciu A. I., “Algebraic invariants for right-angled Artin groups”, Math. Ann., 334:3 (2006), 533–555 | DOI | MR | Zbl
[13] Porter G. J., “The homotopy groups of wedges of suspensions”, Amer. J. Math., 88 (1966), 655–663 | DOI | MR | Zbl
[14] Shelton B., Yuzvinsky S., “Koszul algebras from graphs and hyperplane arrangements”, J. London Math. Soc. Ser. 2, 56:3 (1997), 477–490 | DOI | MR | Zbl
[15] Williams F. D., “Higher Samelson products”, J. Pure and Appl. Algebra, 2 (1972), 249–260 | DOI | MR | Zbl