Multiscale Limit for Finite-Gap Sine-Gordon Solutions and Calculation of Topological Charge Using Theta-Functional Formulae
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 54-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the so-called multiscale limit for spectral curves associated with real finite-gap sine-Gordon solutions. This technique allows us to solve the old problem of calculating the density of the topological charge for real finite-gap sine-Gordon solutions directly from the $\theta$-functional formulae.
@article{TM_2009_266_a2,
     author = {P. G. Grinevich and K. V. Kaipa},
     title = {Multiscale {Limit} for {Finite-Gap} {Sine-Gordon} {Solutions} and {Calculation} of {Topological} {Charge} {Using} {Theta-Functional} {Formulae}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {54--63},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a2/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - K. V. Kaipa
TI  - Multiscale Limit for Finite-Gap Sine-Gordon Solutions and Calculation of Topological Charge Using Theta-Functional Formulae
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 54
EP  - 63
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a2/
LA  - ru
ID  - TM_2009_266_a2
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A K. V. Kaipa
%T Multiscale Limit for Finite-Gap Sine-Gordon Solutions and Calculation of Topological Charge Using Theta-Functional Formulae
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 54-63
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a2/
%G ru
%F TM_2009_266_a2
P. G. Grinevich; K. V. Kaipa. Multiscale Limit for Finite-Gap Sine-Gordon Solutions and Calculation of Topological Charge Using Theta-Functional Formulae. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 54-63. http://geodesic.mathdoc.fr/item/TM_2009_266_a2/

[1] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[2] Cherednik I. V., “Ob usloviyakh veschestvennosti v “konechnozonnom” integrirovanii”, DAN SSSR, 252:5 (1980), 1104–1108 | MR | Zbl

[3] Dubrovin B. A., Natanzon S. M., “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funkts. analiz i ego pril., 16:1 (1982), 27–43 | MR | Zbl

[4] Dubrovin B. A., Novikov S. P., “Algebrogeometricheskie skobki Puassona dlya veschestvennykh konechnozonnykh reshenii uravneniya sine-Gordon i nelineinogo uravneniya Shredingera”, DAN SSSR, 267:6 (1982), 1295–1300 | MR | Zbl

[5] Ercolani N. M., Forest M. G., “The geometry of real sine-Gordon wavetrains”, Commun. Math. Phys., 99:1 (1985), 1–49 | DOI | MR | Zbl

[6] Farkas H. M., Kra I., Riemann surfaces, 2nd ed., Springer, New York, 1992 | MR | Zbl

[7] Grinevich P. G., Novikov S. P., “Veschestvennye konechnozonnye resheniya uravneniya sine-Gordon: formula dlya topologicheskogo zaryada”, UMN, 56:5 (2001), 181–182 | DOI | MR | Zbl

[8] Grinevich P. G., Novikov S. P., “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Commun. Pure and Appl. Math., 56:7 (2003), 956–978 | DOI | MR | Zbl

[9] Its A. R., Kotlyarov V. P., “Yavnye formuly dlya reshenii nelineinogo uravneniya Shredingera”, DAN USSR. Ser. A, 1976, no. 11, 965–968 | MR | Zbl

[10] Kozel V. A., Kotlyarov V. P., “Pochti periodicheskie resheniya uravneniya $u_{tt}-u_{xx}+\sin u=0$”, DAN USSR. Ser. A, 1976, no. 10, 878–881 | MR | Zbl

[11] Novikov S. P., “Algebro-topologicheskii podkhod v problemakh veschestvennosti v teorii konechnozonnykh reshenii uravneniya Sine-Gordon”, Zap. nauch. sem. LOMI, 133, 1984, 177–196 | MR | Zbl