Riemann Surfaces with Orbifold Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 237-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

We interpret the previously developed Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces) as the Teichmüller theory of Riemann surfaces with orbifold points of order 2. In the Poincaré uniformization pattern, we describe necessary and sufficient conditions for the group generated by the Fuchsian group of the surface with added inversions to be of the almost hyperbolic Fuchsian type. All the techniques elaborated for the bordered surfaces (quantization, classical and quantum mapping-class group transformations, and Poisson and quantum algebra of geodesic functions) are equally applicable to the surfaces with orbifold points.
@article{TM_2009_266_a13,
     author = {L. O. Chekhov},
     title = {Riemann {Surfaces} with {Orbifold} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {237--262},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a13/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - Riemann Surfaces with Orbifold Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 237
EP  - 262
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a13/
LA  - ru
ID  - TM_2009_266_a13
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T Riemann Surfaces with Orbifold Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 237-262
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a13/
%G ru
%F TM_2009_266_a13
L. O. Chekhov. Riemann Surfaces with Orbifold Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 237-262. http://geodesic.mathdoc.fr/item/TM_2009_266_a13/

[1] Bonahon F., “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse. Math. Sér. 6, 5 (1996), 233–297 | DOI | MR | Zbl

[2] Chekhov L. O., “Teichmüller theory of bordered surfaces”, SIGMA. Symmetry Integrability Geom. Methods and Appl., 3 (2007), Pap. 066 | MR

[3] Fok V. V., Chekhov L. O., “Kvantovye modulyarnye preobrazovaniya, sootnoshenie pyatiugolnika i geodezicheskie”, Tr. MIAN, 226, 1999, 163–179 | MR | Zbl

[4] Fok V. V., Chekhov L. O., “Kvantovye prostranstva Teikhmyullera”, TMF, 120:3 (1999), 511–528 | DOI | MR | Zbl

[5] Chekhov L. O., Penner R. C., “On quantizing Teichmüller and Thurston theories”, Handbook of Teichmüller theory, V. 1, IRMA Lect. Math. and Theor. Phys., 11, ed. A. Papadopoulos, Eur. Math. Soc., Zürich, 2007, Ch. 14, 579–645 ; arXiv: math/0403247 | MR

[6] Chekhov L. O., Fock V. V., “Observables in 3D gravity and geodesic algebras”, Czech. J. Phys., 50 (2000), 1201–1208 | DOI | MR | Zbl

[7] Etayo J. J., Martínez E., “Fuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfaces”, Math. scand., 95 (2004), 226–244 | MR | Zbl

[8] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl

[9] Fock V. V., Description of moduli space of projective structures via fat graphs, E-print , 1993 arXiv: hep-th/9312193

[10] Fock V. V., Dual Teichmüller spaces, E-print , 1997 arXiv: dg-ga/9702018

[11] Fock V. V., Goncharov A. B., “Dual Teichmüller and lamination spaces”, Handbook of Teichmüller theory, V. 1, IRMA Lect. Math. and Theor. Phys., 11, ed. A. Papadopoulos, Eur. Math. Soc., Zürich, 2007, Ch. 15, 647–684 ; arXiv: math/0510312 | MR

[12] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. Part I: Cluster complexes”, Acta math., 201:1 (2008), 83–146 ; arXiv: math/0608367 | DOI | MR | Zbl

[13] Fomin S., Thurston D., Cluster algebras and triangulated surfaces. Part II: Lambda lengths, Preprint, 2008; http://www.math.lsa.umich.edu/~fomin/Papers/cats2.ps

[14] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl

[15] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. Appl. Math., 28:2 (2002), 119–144 ; arXiv: math/0104241 | DOI | MR | Zbl

[16] Goldman W. M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. math., 85 (1986), 263–302 | DOI | MR | Zbl

[17] Kashaev R. M., “On the spectrum of Dehn twists in quantum Teichmüller theory”, Physics and combinatorics, Proc. Workshop (Nagoya, 2000), World Sci., River Edge (NJ), 2001, 63–81 ; arXiv: math/0008148 | MR | Zbl

[18] Kashaev R. M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 ; arXiv: q-alg/9705021 | DOI | MR | Zbl

[19] Kaufmann R. M., Penner R. C., “Closed/open string diagrammatics”, Nucl. Phys. B, 748 (2006), 335–379 | DOI | MR | Zbl

[20] Nelson J. E., Regge T., “$2+1$ quantum gravity”, Phys. Lett. B, 272 (1991), 213–216 | DOI | MR

[21] Nelson J. E., Regge T., “Invariants of $2+1$ gravity”, Commun. Math. Phys., 155 (1993), 561–568 | DOI | MR | Zbl

[22] Papadopoulos A., Penner R. C., “The Weil–Petersson symplectic structure at Thurston's boundary”, Trans. Amer. Math. Soc., 335 (1993), 891–904 | DOI | MR | Zbl

[23] Penner R. C., “The decorated Teichmüller space of punctured surfaces”, Commun. Math. Phys., 113 (1987), 299–339 | DOI | MR | Zbl

[24] Penner R. C., Harer J. L., Combinatorics of train tracks, Ann. Math. Stud., 125, Princeton Univ. Press, Princeton (NJ), 1992 | MR | Zbl

[25] Teschner J., “An analog of a modular functor from quantized Teichmüller theory”, Handbook of Teichmüller theory, V. 1, IRMA Lect. Math. Theor. Phys., 11, ed. A. Papadopoulos, Eur. Math. Soc., Zürich, 2007, Ch. 16, 685–760 ; arXiv: math/0510174 | MR

[26] Thurston W. P., Minimal stretch maps between hyperbolic surfaces, E-print , 1998 arXiv: math/9801039