A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 33-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study a new 15-vertex triangulation $X$ of the complex projective plane $\mathbb C\mathrm P^2$. The automorphism group of $X$ is isomorphic to $S_4\times S_3$. We prove that the triangulation $X$ is the minimal (with respect to the number of vertices) triangulation of $\mathbb C\mathrm P^2$ admitting a chess colouring of four-dimensional simplices. We provide explicit parametrizations for the simplices of $X$ and show that the automorphism group of $X$ can be realized as a group of isometries of the Fubini–Study metric. We find a 33-vertex subdivision $\overline X$ of the triangulation $X$ such that the classical moment mapping $\mu\colon\mathbb C\mathrm P^2\to\Delta^2$ is a simplicial mapping of the triangulation $\overline X$ onto the barycentric subdivision of the triangle $\Delta^2$. We study the relationship of the triangulation $X$ with complex crystallographic groups.
@article{TM_2009_266_a1,
     author = {A. A. Gaifullin},
     title = {A {Minimal} {Triangulation} of {Complex} {Projective} {Plane} {Admitting} {a~Chess} {Colouring} of {Four-Dimensional} {Simplices}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a1/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 33
EP  - 53
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a1/
LA  - ru
ID  - TM_2009_266_a1
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 33-53
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a1/
%G ru
%F TM_2009_266_a1
A. A. Gaifullin. A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 33-53. http://geodesic.mathdoc.fr/item/TM_2009_266_a1/

[1] Kühnel W., Banchoff T. F., “The 9-vertex complex projective plane”, Math. Intell., 5:3 (1983), 11–22 | DOI | MR | Zbl

[2] Kühnel W., Lassmann G., “The unique 3-neighborly 4-manifold with few vertices”, J. Comb. Theory A, 35 (1983), 173–184 | DOI | MR | Zbl

[3] Bagchi B., Datta B., “On Kühnel's 9-vertex complex projective plane”, Geom. Dedicata, 50 (1994), 1–13 | DOI | MR | Zbl

[4] Morin B., Yoshida M., “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. I”, Mem. Fac. Sci. Kyushu Univ. A, 45:1 (1991), 55–142 | DOI | MR | Zbl

[5] Arnoux P., Marin A., “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. II”, Mem. Fac. Sci. Kyushu Univ. A, 45:2 (1991), 167–244 | DOI | MR | Zbl

[6] Novikov S. P., Dynnikov I. A., “Diskretnye spektralnye simmetrii malomernykh differentsialnykh operatorov i raznostnykh operatorov na pravilnykh reshetkakh i dvumernykh mnogoobraziyakh”, UMN, 52:5 (1997), 175–234 | DOI | MR | Zbl

[7] Dynnikov I. A., Novikov S. P., “Preobrazovaniya Laplasa i simplitsialnye svyaznosti”, UMN, 52:6 (1997), 157–158 | DOI | MR | Zbl

[8] Dynnikov I., Novikov S., “Geometry of the triangle equation on two-manifolds”, Moscow Math. J., 3:2 (2003), 419–438 | MR | Zbl

[9] Banchoff T. F., Kühnel W., “Equilibrium triangulations of the complex projective plane”, Geom. Dedicata, 44 (1992), 313–333 | DOI | MR | Zbl

[10] Brady N., McCammond J., Meier J., “Bounding edge degrees in triangulated 3-manifolds”, Proc. Amer. Math. Soc., 132:1 (2004), 291–298 | DOI | MR | Zbl

[11] Matveev S. V., “Closed polyhedral 3-manifolds with $K\ge0$”, Oberwolfach Rep., 3:1 (2006), 668–670

[12] Lutz F. H., “Triangulated surfaces and higher-dimensional manifolds”, Oberwolfach Rep., 3:1 (2006), 706–707

[13] Madahar K. V., Sarkaria K. S., “A minimal triangulation of the Hopf map and its application”, Geom. Dedicata, 82 (2000), 105–114 | DOI | MR | Zbl

[14] Iosvig M., “Gruppa proektivnostei i raskraska faset prostogo mnogogrannika”, UMN, 56:3 (2001), 171–172 | DOI | MR | Zbl

[15] Joswig M., “Projectivities in simplicial complexes and colorings of simple polytopes”, Math. Ztschr., 240:2 (2002), 243–259 | DOI | MR | Zbl

[16] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[17] Gaifullin A. A., “Mnogoobrazie izospektralnykh simmetricheskikh trekhdiagonalnykh matrits i realizatsiya tsiklov asferichnymi mnogoobraziyami”, Tr. MIAN, 263, 2008, 44–63 | Zbl

[18] Lutz F. H., Triangulated manifolds with few vertices: Combinatorial manifolds, E-print , 2005 arXiv: math/0506372

[19] Kokseter G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR