On Schnabl Solutions of String Field Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 70-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We clarify the relationship between Schnabl's solution and pure gauge configurations. Both Schnabl's and pure gauge solutions are obtained by means of an iterative procedure. We show that the pure gauge string field configuration that is used in the construction of a perturbation series for Schnabl's solution diverges on a large subspace of string configurations, but it can be rendered convergent by adding a compensating term. The additional term ensures the fulfillment of the equations of motion in a weak sense. This compensating term coincides with the term necessary for obtaining an action consistent with Sen's first conjecture.
@article{TM_2009_265_a4,
     author = {I. Ya. Aref'eva and R. V. Gorbachev and M. V. Mal'tsev and P. B. Medvedev},
     title = {On {Schnabl} {Solutions} of {String} {Field} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {70--81},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a4/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - R. V. Gorbachev
AU  - M. V. Mal'tsev
AU  - P. B. Medvedev
TI  - On Schnabl Solutions of String Field Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 70
EP  - 81
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a4/
LA  - ru
ID  - TM_2009_265_a4
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A R. V. Gorbachev
%A M. V. Mal'tsev
%A P. B. Medvedev
%T On Schnabl Solutions of String Field Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 70-81
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a4/
%G ru
%F TM_2009_265_a4
I. Ya. Aref'eva; R. V. Gorbachev; M. V. Mal'tsev; P. B. Medvedev. On Schnabl Solutions of String Field Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 70-81. http://geodesic.mathdoc.fr/item/TM_2009_265_a4/

[1] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, T. 1, 2, Mir, M., 1990

[2] Witten E., “Non-commutative geometry and string field theory”, Nucl. Phys. B, 268 (1986), 253–294 | DOI | MR

[3] Aref'eva I. Ya., Medvedev P. B., Zubarev A. P., “Background formalism for superstring field theory”, Phys. Lett. B, 240 (1990), 356–362 | DOI | MR

[4] Aref'eva I. Ya., Medvedev P. B., Zubarev A. P., “New representation for string field solves the consistency problem for open superstring field theory”, Nucl. Phys. B, 341 (1990), 464–498 | DOI | MR | Zbl

[5] Preitschopf C. R., Thorn C. B., Yost S., “Superstring field theory”, Nucl. Phys. B, 337 (1990), 363–433 | DOI | MR

[6] Berkovits N., “Super-Poincaré invariant superstring field theory”, Nucl. Phys. B, 450 (1995), 90–102 ; arXiv: hep-th/9503099 | DOI | MR

[7] Ohmori K., A review on tachyon condensation in open string field theories, E-print , 2001 arXiv: hep-th/0102085

[8] Aref'eva I. Ya., Belov D. M., Giryavets A. A., Koshelev A. S., Medvedev P. B., Noncommutative field theories and (super)string field theories, E-print , 2001 arXiv: hep-th/0111208

[9] Taylor W., Zwiebach B., D-branes, tachyons, and string field theory, E-print , 2003 arXiv: hep-th/0311017 | MR

[10] Kostelecký V. A., Samuel S., “The static tachyon potential in the open bosonic string theory”, Phys. Lett. B, 207 (1988), 169–173 | DOI | MR

[11] Kostelecký V. A., Samuel S., “On a nonperturbative vacuum for the open bosonic string”, Nucl. Phys. B, 336 (1990), 263–296 | DOI

[12] Moeller N., Taylor W., “Level truncation and the tachyon in open bosonic string field theory”, Nucl. Phys. B, 583 (2000), 105–144 ; arXiv: hep-th/0002237 | DOI | MR | Zbl

[13] Taylor W., “A perturbative analysis of tachyon condensation”, J. High Energy Phys., 2003, no. 03, 029 ; arXiv: hep-th/0208149 | DOI | MR | Zbl

[14] Gaiotto D., Rastelli L., “Experimental string field theory”, J. High Energy Phys., 2003, no. 08, 048 ; arXiv: hep-th/0211012 | DOI | MR

[15] Berkovits N., Sen A., Zwiebach B., “Tachyon condensation in superstring field theory”, Nucl. Phys. B, 587 (2000), 147–178 ; arXiv: hep-th/0002211 | DOI | MR | Zbl

[16] Aref'eva I. Ya., Koshelev A. S., Belov D. M., Medvedev P. B., “Tachyon condensation in cubic superstring field theory”, Nucl. Phys. B, 638 (2002), 3–20 ; arXiv: hep-th/0011117 | DOI | MR | Zbl

[17] Ohmori K., Level-expansion analysis in NS superstring field theory revisited, E-print , 2003 arXiv: hep-th/0305103

[18] Schnabl M., “Analytic solution for tachyon condensation in open string field theory”, Adv. Theor. Math. Phys., 10 (2006), 433–501 ; arXiv: hep-th/0511286 | DOI | MR | Zbl

[19] Erler T., “Tachyon vacuum in cubic superstring field theory”, J. High Energy Phys., 2008, no. 01, 013 ; arXiv: 0707.4591 | DOI | MR

[20] Aref'eva I. Ya., Gorbachev R. V., Medvedev P. B., Tachyon solution in cubic Neveu–Schwarz string field theory, E-print , 2008 arXiv: 0804.2017 | MR

[21] Okawa Y., “Comments on Schnabl's analytic solution for tachyon condensation in Witten's open string field theory”, J. High Energy Phys., 2006, no. 04, 055 ; arXiv: hep-th/0603159 | DOI | MR

[22] Ellwood I., Schnabl M., “Proof of vanishing cohomology at the tachyon vacuum”, J. High Energy Phys., 2007, no. 02, 096 ; arXiv: hep-th/0606142 | DOI | MR

[23] Fuchs E., Kroyter M., Marginal deformation for the photon in superstring field theory, E-print , 2007 arXiv: 0706.0717 | MR

[24] Fuchs E., Kroyter M., “On the validity of the solution of string field theory”, J. High Energy Phys., 2006, no. 05, 006 ; arXiv: hep-th/0603195 | DOI | MR

[25] Erler T., “Split string formalism and the closed string vacuum”, J. High Energy Phys., 2007, no. 05, 083 ; arXiv: hep-th/0611200 | DOI | MR

[26] Erler T., “Split string formalism and the closed string vacuum. II”, J. High Energy Phys., 2007, no. 05, 084 ; arXiv: hep-th/0612050 | DOI | MR

[27] Schnabl M., Comments on marginal deformations in open string field theory, E-print , 2007 arXiv: hep-th/0701248 | MR

[28] Kiermaier M., Okawa Y., Rastelli L., Zwiebach B., Analytic solutions for marginal deformations in open string field theory, E-print , 2007 arXiv: hep-th/0701249 | MR

[29] Rastelli L., Sen A., Zwiebach B., “Boundary CFT construction of D-branes in vacuum string field theory”, J. High Energy Phys., 2001, no. 11, 045 ; arXiv: hep-th/0105168 | DOI | MR

[30] Rastelli L., Zwiebach B., “Tachyon potentials, star products and universality”, J. High Energy Phys., 2001, no. 09, 038 ; arXiv: hep-th/0006240 | DOI | MR

[31] Schnabl M., “Wedge states in string field theory”, J. High Energy Phys., 2003, no. 01, 004 ; arXiv: hep-th/0201095 | DOI | MR | Zbl

[32] Sen A., “Stable non-BPS bound states of BPS D-branes”, J. High Energy Phys., 1998, no. 08, 010 ; arXiv: hep-th/9805019 | DOI | MR | Zbl

[33] Sen A., “Descent relations among bosonic D-branes”, Intern. J. Mod. Phys. A, 14 (1999), 4061–4077 ; arXiv: hep-th/9902105 | DOI | MR | Zbl

[34] Sen A., “SO(32) spinors of type I and other solitons on brane–antibrane pair”, J. High Energy Phys., 1998, no. 09, 023 ; arXiv: hep-th/9808141 | DOI | MR | Zbl

[35] Sen A., Non-BPS states and branes in string theory, E-print , 1999 arXiv: hep-th/9904207 | MR