Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 211-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there is no single uniform tight frame in Euclidean (unitary) space such that a solution of the $\ell_1$-norm minimization problem for the frame representation is attained on the frame coefficients. Then we find an exact solution of the $\ell_1$-minimization problem for the Mercedes-Benz frame in $\mathbb R^N$. We also give some examples of connections between optimization problems of various types.
@article{TM_2009_265_a17,
     author = {S. Ya. Novikov and I. S. Ryabtsov},
     title = {Optimization of {Frame} {Representations} for {Compressed} {Sensing} and {Mercedes-Benz} {Frame}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a17/}
}
TY  - JOUR
AU  - S. Ya. Novikov
AU  - I. S. Ryabtsov
TI  - Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 211
EP  - 219
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a17/
LA  - en
ID  - TM_2009_265_a17
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%A I. S. Ryabtsov
%T Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 211-219
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a17/
%G en
%F TM_2009_265_a17
S. Ya. Novikov; I. S. Ryabtsov. Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 211-219. http://geodesic.mathdoc.fr/item/TM_2009_265_a17/

[1] Blatter Ch., Wavelets, Eine Einführund, Vieweg, Braunschweig–Wiesbaden, 1998 | MR | Zbl

[2] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR | Zbl

[3] Drabkova E. S., Novikov S. Ya., “Ob'em freima Parsevalya”, Vestn. SamGU, 9:1 (2007), 91–107 | MR | Zbl

[4] Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, 1992 | MR | Zbl

[5] Istomina M. N., Pevnyi A. B., “O raspolozhenii tochek na sfere i freime Mersedes-Bents”, Matematicheskoe prosveschenie. Tretya seriya, 11, Izd-vo MTsNMO, M., 2007, 105–112

[6] Kashin B. S., Kulikova T. Yu., “Zamechanie ob opisanii freimov obschego vida”, Mat. zametki, 72:6 (2002), 941–945 | DOI | MR | Zbl

[7] Mallat S., A wavelet tour of signal processing, Acad. Press, San Diego, CA, 1999 | MR | Zbl

[8] Naimark M. A., “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. mat., 4:3 (1940), 277–318 | MR | Zbl

[9] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | Zbl

[10] Rudin W., Functional analysis, McGraw-Hill, New York, 1973 | MR | Zbl

[11] Chui C., An introduction to wavelets, Acad. Press, Boston, 1992 | MR

[12] Casazza P. G., Kovačević J., “Equal-norm tight frames with erasures”, Adv. Comput. Math., 18:2–4 (2003), 387–430 | DOI | MR | Zbl

[13] Christensen O., An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003 | MR

[14] Goyal V. K., Kovačević J., Kelner J. A., “Quantized frame expansions with erasures”, Appl. Comput. Harmonic Anal., 10:3 (2001), 203–233 | DOI | MR | Zbl

[15] Gribonval R., Nielsen M., “On the strong uniqueness of highly sparse representations from redundant dictionaries”, Independent component analysis and blind signal separation, Proc. Intern. Conf. (ICA 2004), Lect. Notes Comput. Sci., 3195, Springer, Berlin, 2004, 201–208 | DOI

[16] Casazza P. G., Leonhard N., The known equal norm Parseval frames as of 2005, E-print , 2005 http://www.math.missouri.edu/~pete/pdf/122-ENPF.pdf

[17] Casazza P. G., Leon M. T., Frames with a given frame operator, E-print , 2002 http://www.math.missouri.edu/~pete/pdf/PM2.pdf

[18] Chen S. S., Donoho D. L., Saunders M. A., “Atomic decomposition by basis pursuit”, SIAM J. Sci. Comput., 20:1 (1999), 33–61 | DOI | MR | Zbl

[19] Compressive sensing resources, http://www.dsp.ece.rice.edu/cs

[20] McConnell J. J., Analysis of algorithms: An active learning approach, Jones and Bartlett Publ., Boston, MA, 2008 | Zbl

[21] Donoho D. L., “Compressed sensing”, IEEE Trans. Inf. Theory, 52:4 (2006), 1289–1306 | DOI | MR | Zbl