Absolutely Simple Prymians of Trigonal Curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 212-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using Galois theory, we explicitly construct absolutely simple (principally polarized) Prym varieties that are not isomorphic to jacobians of curves even if we ignore the polarizations.
@article{TM_2009_264_a20,
     author = {Yu. G. Zarhin},
     title = {Absolutely {Simple} {Prymians} of {Trigonal} {Curves}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {212--223},
     year = {2009},
     volume = {264},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a20/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Absolutely Simple Prymians of Trigonal Curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 212
EP  - 223
VL  - 264
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a20/
LA  - ru
ID  - TM_2009_264_a20
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Absolutely Simple Prymians of Trigonal Curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 212-223
%V 264
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a20/
%G ru
%F TM_2009_264_a20
Yu. G. Zarhin. Absolutely Simple Prymians of Trigonal Curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 212-223. http://geodesic.mathdoc.fr/item/TM_2009_264_a20/

[1] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I: The user language”, J. Symb. Comput., 24 (1997), 235–265 ; http://magma.maths.usyd.edu.au/magma/ | DOI | MR | Zbl

[2] Koo J. K., “On holomorphic differentials of some algebraic function field of one variable over $\mathbb C$”, Bull. Austral. Math. Soc., 43 (1991), 399–405 | DOI | MR | Zbl

[3] Matsumoto K., Terasoma T., “Theta constants associated to cubic threefolds”, J. Alg. Geom., 12 (2003), 741–775 | DOI | MR | Zbl

[4] Mumford D., “Prym varieties. I”, Contributions to analysis, Acad. Press, New York, 1974, 325–350 | DOI | MR

[5] Oort F., “Endomorphism algebras of abelian varieties”, Algebraic geometry and commutative algebra, V. 2, Kinokuniya, Tokyo, 1988, 469–502 | DOI | MR

[6] Passman D. S., Permutation groups, W. A. Benjamin, New York–Amsterdam, 1968 | MR | Zbl

[7] Poonen B., Schaefer E., “Explicit descent for Jacobians of cyclic covers of the projective line”, J. reine und angew. Math., 488 (1997), 141–188 | MR | Zbl

[8] Ribet K., “Galois action on division points of Abelian varieties with real multiplications”, Amer. J. Math., 98 (1976), 751–804 | DOI | MR | Zbl

[9] Schaefer E., “Computing a Selmer group of a Jacobian using functions on the curve”, Math. Ann., 310:3 (1998), 447–471 ; “Erratum”, Math. Ann., 339:1 (2007), 1 | DOI | MR | Zbl | DOI | MR

[10] Serre J.-P., Topics in Galois theory, Jones and Bartlett Publ., Boston–London, 1992 | MR | Zbl

[11] Shimura G., “On analytic families of polarized abelian varieties and automorphic functions”, Ann. Math. Ser. 2, 78 (1963), 149–192 | DOI | MR | Zbl

[12] Shimura G., Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, 1971 | MR | Zbl

[13] Shokurov V. V., “Distinguishing Prymians from Jacobians”, Invent. math., 65:2 (1981), 209–219 | DOI | MR | Zbl

[14] Shokurov V. V., “Mnogoobraziya Prima: teoriya i prilozheniya”, Izv. AN SSSR. Ser. mat., 47:4 (1983), 785–855 | MR | Zbl

[15] Towse C., “Weierstrass points on cyclic covers of the projective line”, Trans. Amer. Math. Soc., 348 (1996), 3355–3378 | DOI | MR | Zbl

[16] Zarhin Yu. G., “Cyclic covers of the projective line, their jacobians and endomorphisms”, J. reine und angew. Math., 544 (2002), 91–110 | MR | Zbl

[17] Zarhin Yu. G., “The endomorphism rings of jacobians of cyclic covers of the projective line”, Math. Proc. Cambridge Philos. Soc., 136 (2004), 257–267 | DOI | MR | Zbl

[18] Zarhin Yu. G., “Endomorphism algebras of superelliptic Jacobians”, Geometric methods in algebra and number theory, Progr. Math., 235, eds. F. Bogomolov, Yu. Tschinkel, Birkhäuser, Boston, 2005, 339–362 | DOI | MR | Zbl

[19] Zarhin Yu. G., “Endomorphisms of superelliptic jacobians”, Math. Ztschr., 261 (2009), 691–707 | DOI | MR | Zbl

[20] Zarhin Yu. G., “Cubic surfaces and cubic threefolds, jacobians and intermediate jacobians”, Algebra, arithmetic and geometry: Manin Festschrift, V. 2, Progr. Math., 270, Birkhäuser, Boston, 2009 ; arXiv: math/0610138v3 | Zbl