Birational Maps and Special Lagrangian Fibrations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 209-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

Birational maps give the main research tool for the theory of Fano varieties, as we know from the fundamental works of V. A. Iskovskikh and his school. Nowadays one can exploit them in the new approach of D. Auroux to Mirror Symmetry of Fano varieties, which is based on a certain generalization of the notion of special Lagrangian fibration suitable for Fano varieties. We present a very simple example of how a special Lagrangian fibration can be transferred by a birational map.
@article{TM_2009_264_a19,
     author = {N. A. Tyurin},
     title = {Birational {Maps} and {Special} {Lagrangian} {Fibrations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {209--211},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a19/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Birational Maps and Special Lagrangian Fibrations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 209
EP  - 211
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a19/
LA  - ru
ID  - TM_2009_264_a19
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Birational Maps and Special Lagrangian Fibrations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 209-211
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a19/
%G ru
%F TM_2009_264_a19
N. A. Tyurin. Birational Maps and Special Lagrangian Fibrations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 209-211. http://geodesic.mathdoc.fr/item/TM_2009_264_a19/

[1] Auroux D., “Mirror symmetry and T-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol., 1 (2007), 51–91 ; arXiv: 0706.3207 | MR | Zbl

[2] Griffiths P., Harris J., Principles of algebraic geometry, Wiley, New York, 1978 | MR | Zbl