Letters of a~Bi-rationalist. VII~Ordered Termination
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 184-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

To construct a resulting model in the LMMP, it is sufficient to prove the existence of log flips and their termination for some sequences. We prove that the LMMP in dimension $d-1$ and the termination of terminal log flips in dimension $d$ imply, for any log pair of dimension $d$, the existence of a resulting model: a strictly log minimal model or a strictly log terminal Mori log fibration, and imply the existence of log flips in dimension $d+1$. As a consequence, we prove the existence of a resulting model of 4-fold log pairs, the existence of log flips in dimension 5, and Geography of log models in dimension 4.
@article{TM_2009_264_a18,
     author = {V. V. Shokurov},
     title = {Letters of {a~Bi-rationalist.} {VII~Ordered} {Termination}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {184--208},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a18/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Letters of a~Bi-rationalist. VII~Ordered Termination
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 184
EP  - 208
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a18/
LA  - ru
ID  - TM_2009_264_a18
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Letters of a~Bi-rationalist. VII~Ordered Termination
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 184-208
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a18/
%G ru
%F TM_2009_264_a18
V. V. Shokurov. Letters of a~Bi-rationalist. VII~Ordered Termination. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 184-208. http://geodesic.mathdoc.fr/item/TM_2009_264_a18/

[1] Alexeev V., Hacon Ch., Kawamata Yu., “Termination of (many) 4-dimensional log flips”, Invent. math., 168 (2007), 433–448 | DOI | MR | Zbl

[2] Ambro F., “Quasi-log varieties”, Tr. MIAN, 240, 2003, 220–239 | MR | Zbl

[3] Hacon Ch. D., McKernan J., On the existence of flips, E-print , 2005 arXiv: math.AG/0507597

[4] Iskovskikh V. A., Shokurov V. V., “Biratsionalnye modeli i perestroiki”, UMN, 60:1 (2005), 29–98 | DOI | MR | Zbl

[5] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, Kinokuniya, Tokyo, 1987, 283–360 | MR

[6] Prokhorov Yu. G., Shokurov V. V., “Toward the second main theorem on complements”, J. Alg. Geom., 18 (2009), 151–199 | DOI | MR | Zbl

[7] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR | Zbl

[8] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–203 | MR | Zbl

[9] Shokurov V. V., “Anticanonical boundedness for curves”, Appendix to Nikulin V. V. The diagram method for 3-folds and its application to the Kähler cone and Picard number of Calabi–Yau 3-folds. I, Higher dimensional complex varieties (Trento, June 1994), eds. M. Andreatta, T. Peternell, de Gruyter, Berlin–New York, 1996, 321–328 | MR | Zbl

[10] Shokurov V. V., “Letters of a bi-rationalist. I: A projectivity criterion”, Birational algebraic geometry, Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 143–152 | DOI | MR | Zbl

[11] Shokurov V. V., “3-fold log models”, J. Math. Sci., 81 (1996), 2667–2699 | DOI | MR | Zbl

[12] Shokurov V. V., “Prelimiting flips”, Tr. MIAN, 240, 2003, 82–219 | MR | Zbl

[13] Shokurov V. V., “Pisma o biratsionalnom. V: M.l.d. i obryv logflipov”, Tr. MIAN, 246, 2004, 328–351 | MR | Zbl