Two Orbits: When Is One in the Closure of the Other?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional algebraic $G$-module, and let $\mathcal O_1$ and $\mathcal O_2$ be two $G$-orbits in $V$. We describe a constructive way to find out whether or not $\mathcal O_1$ lies in the closure of $\mathcal O_2$.
@article{TM_2009_264_a16,
     author = {V. L. Popov},
     title = {Two {Orbits:} {When} {Is} {One} in the {Closure} of the {Other?}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {152--164},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a16/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Two Orbits: When Is One in the Closure of the Other?
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 152
EP  - 164
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a16/
LA  - ru
ID  - TM_2009_264_a16
ER  - 
%0 Journal Article
%A V. L. Popov
%T Two Orbits: When Is One in the Closure of the Other?
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 152-164
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a16/
%G ru
%F TM_2009_264_a16
V. L. Popov. Two Orbits: When Is One in the Closure of the Other?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164. http://geodesic.mathdoc.fr/item/TM_2009_264_a16/

[1] Burbaki N., Gruppy i algebry Li, Glavy 4–6, Mir, M., 1972 | MR | Zbl

[2] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 41, VINITI, M., 1990 | MR | Zbl

[3] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 36:4 (1972), 749–764 | MR | Zbl

[4] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 55, VINITI, M., 1989, 137–309 | MR | Zbl

[5] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i formula Bezu dlya matrichnykh funktsii konechnomernykh predstavlenii”, Funkts. analiz i ego pril., 21:4 (1987), 73–74 | MR | Zbl

[6] Kashin V. V., “Orbity prisoedinennogo i koprisoedinennogo deistvii borelevskikh podgrupp poluprostykh algebraicheskikh grupp”, Voprosy teorii grupp i gomologicheskoi algebry, Izd-vo YarGU, Yaroslavl, 1990, 141–158 | MR

[7] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[8] Mamford D., Algebraicheskaya geometriya. T. 1: Kompleksnye proektivnye mnogoobraziya, Mir, M., 1979 | MR

[9] Popov V. L., “Struktura zamykanii orbit v prostranstvakh konechnomernykh lineinykh predstavlenii gruppy $SL(2)$”, Mat. zametki, 16:6 (1974), 943–950 | MR | Zbl

[10] Popov V. L., “Konus nul-form Gilberta”, Tr. MIAN, 241, 2003, 192–209 | MR | Zbl

[11] Bongartz K., “Degenerations for representations of tame quivers”, Ann. Sci. École Norm. Supér., 28:5 (1995), 647–668 | MR | Zbl

[12] Brüstle T., Hille L., Röhrle G., Zwara G., “The Bruhat–Chevalley order of parabolic group actions in general linear groups and degeneration for $\Delta$-filtered modules”, Adv. Math., 148:2 (1999), 203–242 | DOI | MR | Zbl

[13] Burde D., “Degenerations of 7-dimensional nilpotent Lie algebras”, Commun. Algebra, 33:4 (2005), 1259–1277 | DOI | MR | Zbl

[14] Burde D., Steinhoff C., “Classification of orbit closures of 4-dimensional complex Lie algebras”, J. Algebra, 214 (1999), 729–739 | DOI | MR | Zbl

[15] Carter R. W., Finite groups of Lie type: Conjugacy classes and complex characters, J. Wiley Sons, New York, 1985 | MR | Zbl

[16] Collingwood D. H., McGovern W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993 | MR | Zbl

[17] Derksen H., Kemper G., Computational invariant theory, Invariant theory and algebraic transformation groups, 1, Encycl. Math. Sci., 130, Springer, Berlin–Heidelberg, 2002 | MR

[18] Goodwin S. M., Hille L., Röhrle G., Orbits of parabolic subgroups on metabelian ideals, E-print , 2007 arXiv: 0711.3711 | MR

[19] Grothendieck A., “Torsion homologique et sections rationnelles”, Anneaux de Chow et applications, Sém. C. Chevalley ENS, Paris, 1958, 501–529

[20] Jelonek Z., “On the effective Nullstellensatz”, Invent. math., 162 (2005), 1–17 | DOI | MR | Zbl

[21] Magyar P., Weyman J., Zelevinsky A., “Multiple flag varieties of finite type”, Adv. Math., 141:1 (1999), 97–118 | DOI | MR | Zbl

[22] Matsumura H., Monsky P., “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3 (1964), 347–361 | MR | Zbl

[23] Moser-Jauslin L., “The Chow rings of smooth complete $SL(2)$-embeddings”, Compos. Math., 82 (1992), 67–106 | MR | Zbl

[24] Mulmuley K. D., Sohoni M., “Geometric complexity theory. I: An approach to the P vs. NP and related problems”, SIAM J. Comput., 31:2 (2001), 496–526 | DOI | MR | Zbl

[25] Mumford D., Geometric invariant theory, Ergebn. Math., 34, Springer, Berlin, 1965 | MR | Zbl

[26] Pervouchine D. D., “Hierarchy of closures of matrix pencils”, J. Lie Theory, 14 (2004), 443–479 | MR | Zbl

[27] Popov V. L., “Constructive invariant theory”, Astérisque, 87–88 (1981), 303–334 | MR | Zbl

[28] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78 (1956), 401–443 | DOI | MR | Zbl

[29] Rosenlicht M., “On quotient varieties and the affine embedding of certain homogeneous spaces”, Trans. Amer. Math. Soc., 101 (1961), 211–223 | DOI | MR | Zbl

[30] Seeley C., “Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb C$”, Commun. Algebra, 18 (1990), 3493–3505 | DOI | MR | Zbl

[31] Spaltenstein N., Classes unipotentes et sous-groupes de Borel, Lect. Notes Math., 946, Springer, Berlin, 1982 | MR | Zbl

[32] Springer T. A., Linear algebraic groups, 2nd ed., Progr. Math., 9, Birkhäser, Boston, 1998 | MR | Zbl

[33] Tauvel P., Yu R. W. T., Lie algebras and algebraic groups, Springer Monogr. Math., Springer, Berlin, 2005 | MR | Zbl

[34] Weyman J., “The equations of conjugacy classes of nilpotent matrices”, Invent. math., 98 (1989), 229–245 | DOI | MR | Zbl