Two Orbits: When Is One in the Closure of the Other?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional algebraic $G$-module, and let $\mathcal O_1$ and $\mathcal O_2$ be two $G$-orbits in $V$. We describe a constructive way to find out whether or not $\mathcal O_1$ lies in the closure of $\mathcal O_2$.
@article{TM_2009_264_a16,
author = {V. L. Popov},
title = {Two {Orbits:} {When} {Is} {One} in the {Closure} of the {Other?}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {152--164},
publisher = {mathdoc},
volume = {264},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a16/}
}
V. L. Popov. Two Orbits: When Is One in the Closure of the Other?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164. http://geodesic.mathdoc.fr/item/TM_2009_264_a16/