Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_264_a16, author = {V. L. Popov}, title = {Two {Orbits:} {When} {Is} {One} in the {Closure} of the {Other?}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {152--164}, publisher = {mathdoc}, volume = {264}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a16/} }
V. L. Popov. Two Orbits: When Is One in the Closure of the Other?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164. http://geodesic.mathdoc.fr/item/TM_2009_264_a16/
[1] Burbaki N., Gruppy i algebry Li, Glavy 4–6, Mir, M., 1972 | MR | Zbl
[2] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 41, VINITI, M., 1990 | MR | Zbl
[3] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 36:4 (1972), 749–764 | MR | Zbl
[4] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 55, VINITI, M., 1989, 137–309 | MR | Zbl
[5] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i formula Bezu dlya matrichnykh funktsii konechnomernykh predstavlenii”, Funkts. analiz i ego pril., 21:4 (1987), 73–74 | MR | Zbl
[6] Kashin V. V., “Orbity prisoedinennogo i koprisoedinennogo deistvii borelevskikh podgrupp poluprostykh algebraicheskikh grupp”, Voprosy teorii grupp i gomologicheskoi algebry, Izd-vo YarGU, Yaroslavl, 1990, 141–158 | MR
[7] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000
[8] Mamford D., Algebraicheskaya geometriya. T. 1: Kompleksnye proektivnye mnogoobraziya, Mir, M., 1979 | MR
[9] Popov V. L., “Struktura zamykanii orbit v prostranstvakh konechnomernykh lineinykh predstavlenii gruppy $SL(2)$”, Mat. zametki, 16:6 (1974), 943–950 | MR | Zbl
[10] Popov V. L., “Konus nul-form Gilberta”, Tr. MIAN, 241, 2003, 192–209 | MR | Zbl
[11] Bongartz K., “Degenerations for representations of tame quivers”, Ann. Sci. École Norm. Supér., 28:5 (1995), 647–668 | MR | Zbl
[12] Brüstle T., Hille L., Röhrle G., Zwara G., “The Bruhat–Chevalley order of parabolic group actions in general linear groups and degeneration for $\Delta$-filtered modules”, Adv. Math., 148:2 (1999), 203–242 | DOI | MR | Zbl
[13] Burde D., “Degenerations of 7-dimensional nilpotent Lie algebras”, Commun. Algebra, 33:4 (2005), 1259–1277 | DOI | MR | Zbl
[14] Burde D., Steinhoff C., “Classification of orbit closures of 4-dimensional complex Lie algebras”, J. Algebra, 214 (1999), 729–739 | DOI | MR | Zbl
[15] Carter R. W., Finite groups of Lie type: Conjugacy classes and complex characters, J. Wiley Sons, New York, 1985 | MR | Zbl
[16] Collingwood D. H., McGovern W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993 | MR | Zbl
[17] Derksen H., Kemper G., Computational invariant theory, Invariant theory and algebraic transformation groups, 1, Encycl. Math. Sci., 130, Springer, Berlin–Heidelberg, 2002 | MR
[18] Goodwin S. M., Hille L., Röhrle G., Orbits of parabolic subgroups on metabelian ideals, E-print , 2007 arXiv: 0711.3711 | MR
[19] Grothendieck A., “Torsion homologique et sections rationnelles”, Anneaux de Chow et applications, Sém. C. Chevalley ENS, Paris, 1958, 501–529
[20] Jelonek Z., “On the effective Nullstellensatz”, Invent. math., 162 (2005), 1–17 | DOI | MR | Zbl
[21] Magyar P., Weyman J., Zelevinsky A., “Multiple flag varieties of finite type”, Adv. Math., 141:1 (1999), 97–118 | DOI | MR | Zbl
[22] Matsumura H., Monsky P., “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3 (1964), 347–361 | MR | Zbl
[23] Moser-Jauslin L., “The Chow rings of smooth complete $SL(2)$-embeddings”, Compos. Math., 82 (1992), 67–106 | MR | Zbl
[24] Mulmuley K. D., Sohoni M., “Geometric complexity theory. I: An approach to the P vs. NP and related problems”, SIAM J. Comput., 31:2 (2001), 496–526 | DOI | MR | Zbl
[25] Mumford D., Geometric invariant theory, Ergebn. Math., 34, Springer, Berlin, 1965 | MR | Zbl
[26] Pervouchine D. D., “Hierarchy of closures of matrix pencils”, J. Lie Theory, 14 (2004), 443–479 | MR | Zbl
[27] Popov V. L., “Constructive invariant theory”, Astérisque, 87–88 (1981), 303–334 | MR | Zbl
[28] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78 (1956), 401–443 | DOI | MR | Zbl
[29] Rosenlicht M., “On quotient varieties and the affine embedding of certain homogeneous spaces”, Trans. Amer. Math. Soc., 101 (1961), 211–223 | DOI | MR | Zbl
[30] Seeley C., “Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb C$”, Commun. Algebra, 18 (1990), 3493–3505 | DOI | MR | Zbl
[31] Spaltenstein N., Classes unipotentes et sous-groupes de Borel, Lect. Notes Math., 946, Springer, Berlin, 1982 | MR | Zbl
[32] Springer T. A., Linear algebraic groups, 2nd ed., Progr. Math., 9, Birkhäser, Boston, 1998 | MR | Zbl
[33] Tauvel P., Yu R. W. T., Lie algebras and algebraic groups, Springer Monogr. Math., Springer, Berlin, 2005 | MR | Zbl
[34] Weyman J., “The equations of conjugacy classes of nilpotent matrices”, Invent. math., 98 (1989), 229–245 | DOI | MR | Zbl