Two Orbits: When Is One in the Closure of the Other?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional algebraic $G$-module, and let $\mathcal O_1$ and $\mathcal O_2$ be two $G$-orbits in $V$. We describe a constructive way to find out whether or not $\mathcal O_1$ lies in the closure of $\mathcal O_2$.
@article{TM_2009_264_a16,
     author = {V. L. Popov},
     title = {Two {Orbits:} {When} {Is} {One} in the {Closure} of the {Other?}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {152--164},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a16/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Two Orbits: When Is One in the Closure of the Other?
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 152
EP  - 164
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a16/
LA  - ru
ID  - TM_2009_264_a16
ER  - 
%0 Journal Article
%A V. L. Popov
%T Two Orbits: When Is One in the Closure of the Other?
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 152-164
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a16/
%G ru
%F TM_2009_264_a16
V. L. Popov. Two Orbits: When Is One in the Closure of the Other?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 152-164. http://geodesic.mathdoc.fr/item/TM_2009_264_a16/