Multiple Fibers of del Pezzo Fibrations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 137-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a terminal three-dimensional del Pezzo fibration has no fibers of multiplicity $>6$. We also obtain a rough classification of possible configurations of singular points on multiple fibers and give some examples.
@article{TM_2009_264_a15,
     author = {S. Mori and Yu. G. Prokhorov},
     title = {Multiple {Fibers} of del {Pezzo} {Fibrations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {137--151},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a15/}
}
TY  - JOUR
AU  - S. Mori
AU  - Yu. G. Prokhorov
TI  - Multiple Fibers of del Pezzo Fibrations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 137
EP  - 151
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a15/
LA  - en
ID  - TM_2009_264_a15
ER  - 
%0 Journal Article
%A S. Mori
%A Yu. G. Prokhorov
%T Multiple Fibers of del Pezzo Fibrations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 137-151
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a15/
%G en
%F TM_2009_264_a15
S. Mori; Yu. G. Prokhorov. Multiple Fibers of del Pezzo Fibrations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 137-151. http://geodesic.mathdoc.fr/item/TM_2009_264_a15/

[1] Alexeev V., “General elephants of $\mathbf Q$-Fano 3-folds”, Compos. Math., 91:1 (1994), 91–116 | MR | Zbl

[2] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Appl. Math., J. Wiley Sons, New York etc., 1978 | MR | Zbl

[3] Hacking P., Prokhorov Yu., Degenerations of del Pezzo surfaces I, E-print , 2005 arXiv: math.AG/0509529

[4] Hidaka F., Watanabe K., “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4:2 (1981), 319–330 | DOI | MR | Zbl

[5] Kawamata Y., “Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. Math. Ser. 2, 127:1 (1988), 93–163 | DOI | MR | Zbl

[6] Kawamata Y., “On Fujita's freeness conjecture for 3-folds and 4-folds”, Math. Ann., 308:3 (1997), 491–505 | DOI | MR | Zbl

[7] Kawamata Y., “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | DOI | MR | Zbl

[8] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR

[9] Kodaira K., “On compact analytic surfaces. II”, Ann. Math. Ser. 2, 77 (1963), 563–626 | DOI | Zbl

[10] Kodaira K., “On the structure of compact complex analytic surfaces. I”, Amer. J. Math., 86 (1964), 751–798 | DOI | MR | Zbl

[11] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Astérisque, 211, Soc. math. France, Paris, 1992 | MR

[12] Kollár J., Shepherd-Barron N. I., “Threefolds and deformations of surface singularities”, Invent. math., 91:2 (1988), 299–338 | DOI | MR | Zbl

[13] Mori S., “On 3-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl

[14] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[15] Mori S., Prokhorov Yu., “On $\mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl

[16] Miyanishi M., Zhang D. Q., “Gorenstein log del Pezzo surfaces of rank one”, J. Algebra, 118:1 (1988), 63–84 | DOI | MR | Zbl

[17] Miyanishi M., Zhang D. Q., “Gorenstein log del Pezzo surfaces. II”, J. Algebra, 156:1 (1993), 183–193 | DOI | MR | Zbl

[18] Nakayama N., “Hodge filtrations and the higher direct images of canonical sheaves”, Invent. math., 85:1 (1986), 217–221 | DOI | MR | Zbl

[19] Reid M., “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Symp. Pure Math., 46, Pt. 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | DOI | MR

[20] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–203 | MR | Zbl