Factoriality of Complete Intersections in~$\mathbb P^5$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 109-115

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complete intersection of two hypersurfaces $F_n$ and $F_k$ in $\mathbb P^5$ of degree $n$ and $k$, respectively, with $n\ge k$, such that the singularities of $X$ are nodal and $F_k$ is smooth. We prove that if the threefold $X$ has at most $(n+k-2)(n-1)-1$ singular points, then it is factorial.
@article{TM_2009_264_a12,
     author = {D. Kosta},
     title = {Factoriality of {Complete} {Intersections} in~$\mathbb P^5$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a12/}
}
TY  - JOUR
AU  - D. Kosta
TI  - Factoriality of Complete Intersections in~$\mathbb P^5$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 109
EP  - 115
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a12/
LA  - en
ID  - TM_2009_264_a12
ER  - 
%0 Journal Article
%A D. Kosta
%T Factoriality of Complete Intersections in~$\mathbb P^5$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 109-115
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a12/
%G en
%F TM_2009_264_a12
D. Kosta. Factoriality of Complete Intersections in~$\mathbb P^5$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 109-115. http://geodesic.mathdoc.fr/item/TM_2009_264_a12/