Factoriality of Complete Intersections in~$\mathbb P^5$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 109-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complete intersection of two hypersurfaces $F_n$ and $F_k$ in $\mathbb P^5$ of degree $n$ and $k$, respectively, with $n\ge k$, such that the singularities of $X$ are nodal and $F_k$ is smooth. We prove that if the threefold $X$ has at most $(n+k-2)(n-1)-1$ singular points, then it is factorial.
@article{TM_2009_264_a12,
     author = {D. Kosta},
     title = {Factoriality of {Complete} {Intersections} in~$\mathbb P^5$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a12/}
}
TY  - JOUR
AU  - D. Kosta
TI  - Factoriality of Complete Intersections in~$\mathbb P^5$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 109
EP  - 115
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a12/
LA  - en
ID  - TM_2009_264_a12
ER  - 
%0 Journal Article
%A D. Kosta
%T Factoriality of Complete Intersections in~$\mathbb P^5$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 109-115
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a12/
%G en
%F TM_2009_264_a12
D. Kosta. Factoriality of Complete Intersections in~$\mathbb P^5$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 109-115. http://geodesic.mathdoc.fr/item/TM_2009_264_a12/

[1] Bese E., “On the spannedness and very ampleness of certain line bundles on the blow-ups of $\mathbb P_{\mathbb C^2}$ and $\mathbb F_r$”, Math. Ann., 262 (1983), 225–238 | DOI | MR | Zbl

[2] Cheltsov I., Points in projective spaces and applications, E-print , 2005 arXiv: math.AG/0511578v4

[3] Cheltsov I. A., “Faktorialnost trekhmernykh nodalnykh mnogoobrazii i svyaznost mnozhestva log-kanonicheskikh osobennostei”, Mat. sb., 197:3 (2006), 87–116 | DOI | MR | Zbl

[4] Cheltsov I., Factorial threefold hypersurfaces, E-print , 2008 arXiv: 0803.3301

[5] Cheltsov I., Park J., “Factorial hypersurfaces in $\mathbb P^4$ with nodes”, Geom. Dedicata, 121 (2006), 205–219 | DOI | MR | Zbl

[6] Cynk S., “Defect of a nodal hypersurface”, Manuscr. math., 104:3 (2001), 325–331 | DOI | MR | Zbl

[7] Davis E. D., Geramita A. V., “Birational morphisms to $\mathbb P^2$: An ideal-theoretic perspective”, Math. Ann., 279 (1988), 435–448 | DOI | MR | Zbl

[8] Davis E. D., Geramita A. V., Orecchia F., “Gorenstein algebras and the Cayley–Bacharach theorem”, Proc. Amer. Math. Soc., 93:4 (1985), 593–597 | DOI | MR | Zbl

[9] Edmonds J., “Minimum partition of a matroid into independent subsets”, J. Res. Nat. Bur. Stand. B: Math. and Math. Phys., 69 (1965), 67–72 | DOI | MR | Zbl

[10] Eisenbud D., Green M., Harris J., “Higher Castelnuovo theory”, Astérisque, 218 (1993), 187–202 | MR | Zbl

[11] Eisenbud D., Koh J.-H., “Remarks on points in a projective space”, Commutative algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989, 157–172 | DOI | MR

[12] Kosta D., “Factoriality condition of some nodal threefolds in $\mathbb P^4$”, Manuscr. math., 127:2 (2008), 151–166 | DOI | MR | Zbl