Cohomology of Graded Lie Algebras of Maximal Class with Coefficients in the Adjoint Representation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 106-119
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute explicitly the adjoint cohomology of two $\mathbb N$-graded Lie algebras of maximal class (infinite-dimensional filiform Lie algebras) $\mathfrak m_0$ and $\mathfrak m_2$. It is known that up to an isomorphism there are only three $\mathbb N$-graded Lie algebras of maximal class. The third algebra from this list is the “positive” part $L_1$ of the Witt (or Virasoro) algebra, and its adjoint cohomology was computed earlier by Feigin and Fuchs.
@article{TM_2008_263_a7,
author = {D. V. Millionshchikov},
title = {Cohomology of {Graded} {Lie} {Algebras} of {Maximal} {Class} with {Coefficients} in the {Adjoint} {Representation}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {106--119},
publisher = {mathdoc},
volume = {263},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2008_263_a7/}
}
TY - JOUR AU - D. V. Millionshchikov TI - Cohomology of Graded Lie Algebras of Maximal Class with Coefficients in the Adjoint Representation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 106 EP - 119 VL - 263 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_263_a7/ LA - ru ID - TM_2008_263_a7 ER -
%0 Journal Article %A D. V. Millionshchikov %T Cohomology of Graded Lie Algebras of Maximal Class with Coefficients in the Adjoint Representation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 106-119 %V 263 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2008_263_a7/ %G ru %F TM_2008_263_a7
D. V. Millionshchikov. Cohomology of Graded Lie Algebras of Maximal Class with Coefficients in the Adjoint Representation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 106-119. http://geodesic.mathdoc.fr/item/TM_2008_263_a7/