Ring of Simple Polytopes and Differential Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 18-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple polytopes are a classical object of convex geometry. They play a key role in many modern fields of research, such as algebraic and symplectic geometry, toric topology, enumerative combinatorics, and mathematical physics. In this paper, the results of a new approach based on a differential ring of simple polytopes are described. This approach allows one to apply the theory of differential equations to the study of combinatorial invariants of simple polytopes.
@article{TM_2008_263_a2,
     author = {V. M. Buchstaber},
     title = {Ring of {Simple} {Polytopes} and {Differential} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {18--43},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_263_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Ring of Simple Polytopes and Differential Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 18
EP  - 43
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_263_a2/
LA  - ru
ID  - TM_2008_263_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Ring of Simple Polytopes and Differential Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 18-43
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_263_a2/
%G ru
%F TM_2008_263_a2
V. M. Buchstaber. Ring of Simple Polytopes and Differential Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 18-43. http://geodesic.mathdoc.fr/item/TM_2008_263_a2/