Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 50-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamical system controlled by an automaton with memory is considered. The continuous part of the system is described by differential equations, and the automaton part, by recurrence inclusions. The instants of time at which the state of the automaton part is changed are not known in advance and are determined during the optimization process. Moreover, modes with multiple switchings of the automaton part at a given instant of time are admitted. Necessary conditions for the optimality of a program control are obtained. The application of the optimality conditions is illustrated by examples.
@article{TM_2008_262_a4,
     author = {A. S. Bortakovskii},
     title = {Necessary {Conditions} for the {Optimality} of the {Automaton} {Part} of {a~Logical--Dynamical} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {50--63},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a4/}
}
TY  - JOUR
AU  - A. S. Bortakovskii
TI  - Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 50
EP  - 63
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a4/
LA  - ru
ID  - TM_2008_262_a4
ER  - 
%0 Journal Article
%A A. S. Bortakovskii
%T Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 50-63
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a4/
%G ru
%F TM_2008_262_a4
A. S. Bortakovskii. Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 50-63. http://geodesic.mathdoc.fr/item/TM_2008_262_a4/

[1] Semenov V. V., “Dinamicheskoe programmirovanie v sinteze logiko-dinamicheskikh sistem”, Priborostroenie, 1984, no. 9, 71–77

[2] Bortakovskii A. S., “Dostatochnye usloviya optimalnosti avtomatnoi chasti logiko-dinamicheskoi sistemy”, Izv. RAN. Teoriya i sist. upr., 2006, no. 6, 77–92 | MR

[3] Bortakovskii A. S., “Neobkhodimye usloviya optimalnosti upravleniya logiko-dinamicheskimi sistemami”, Izv. RAN. Teoriya i sist. upr., 2007, no. 6, 16–33 | MR

[4] Vasilev S. N., Zherlov A. K., Fedosov E. A., Fedunov B. E., Intellektnoe upravlenie dinamicheskimi sistemami, Fizmatlit, M., 2000

[5] Modelling and analysis of logic controlled dynamic systems:, IFAC Workshop, Inst. Syst. Dyn. and Control Theory. Sib. Branch RAS, Irkutsk, 2003

[6] R. L. Grossmann, A. Nerode, A. P. Ravn, H. Rischel (eds.), Hybrid systems, Lect. Notes Comput. Sci., 736, Springer, Berlin, 1993 | MR | Zbl

[7] R. Alur, T. A. Henzinger, E. D. Sontag (eds.), Hybrid systems, III, Lect. Notes Comput. Sci., 1066, Springer, Berlin, 1996

[8] P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, S. Sastry (eds.), Hybrid systems, V, Lect. Notes Comput. Sci., 1567, Springer, Berlin, 1999 | Zbl

[9] Matveev A. S., Savkin A. V., Qualitative theory of hybrid dynamical systems, Birkhäuser, Boston, 2000 | Zbl

[10] Cassandras C. G., Pepyne D. L., Wardi Y., “Optimal control of a class of hybrid systems”, IEEE Trans. Autom. Control., 46:3 (2001), 398–415 | DOI | MR | Zbl

[11] Savkin A. V., Evans R. J., Hybrid dynamical systems: Controller and sensor switching problems, Birkhäuser, Boston, 2002 | MR | Zbl

[12] Gurman V. I., Vyrozhdennye zadachi optimalnogo upravleniya, Nauka, M., 1977 | MR | Zbl

[13] Liberzon D., Morse A. S., “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70 | DOI

[14] Miller B. M., Rubinovich E. Ya., Impulsive control in continuous and discrete-continuous systems, Kluwer, New York, 2003 | MR | Zbl

[15] Li Z., Soh Y., Wen C., Switched and impulsive systems: Analysis, design and applications, Springer, Berlin, 2005 | MR

[16] Bortakovskii A. S., Panteleev A. V., “Dostatochnye usloviya optimalnosti upravleniya nepreryvno-diskretnymi sistemami”, Avtomatika i telemekhanika, 1987, no. 7, 57–66 | MR | Zbl

[17] Letov A. M., Dinamika poleta i upravlenie, Nauka, M., 1969

[18] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | Zbl

[19] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[20] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973 | MR | Zbl

[21] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimalnogo upravleniya, Nauka i tekhnika, Minsk, 1974 | MR

[22] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[23] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl