Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 50-63

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamical system controlled by an automaton with memory is considered. The continuous part of the system is described by differential equations, and the automaton part, by recurrence inclusions. The instants of time at which the state of the automaton part is changed are not known in advance and are determined during the optimization process. Moreover, modes with multiple switchings of the automaton part at a given instant of time are admitted. Necessary conditions for the optimality of a program control are obtained. The application of the optimality conditions is illustrated by examples.
@article{TM_2008_262_a4,
     author = {A. S. Bortakovskii},
     title = {Necessary {Conditions} for the {Optimality} of the {Automaton} {Part} of {a~Logical--Dynamical} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {50--63},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a4/}
}
TY  - JOUR
AU  - A. S. Bortakovskii
TI  - Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 50
EP  - 63
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a4/
LA  - ru
ID  - TM_2008_262_a4
ER  - 
%0 Journal Article
%A A. S. Bortakovskii
%T Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 50-63
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a4/
%G ru
%F TM_2008_262_a4
A. S. Bortakovskii. Necessary Conditions for the Optimality of the Automaton Part of a~Logical--Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 50-63. http://geodesic.mathdoc.fr/item/TM_2008_262_a4/