Minimax Control for Nonstationary Linear Operator Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 32-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution to the minimax linear–quadratic problem of control of an operator system on a semi-infinite time interval is presented. The solution is based on the abstract maximum principle, Willems' behavioral approach, the direct method of basic operators, and a small gain theorem.
@article{TM_2008_262_a3,
     author = {A. E. Barabanov},
     title = {Minimax {Control} for {Nonstationary} {Linear} {Operator} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {32--49},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a3/}
}
TY  - JOUR
AU  - A. E. Barabanov
TI  - Minimax Control for Nonstationary Linear Operator Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 32
EP  - 49
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a3/
LA  - ru
ID  - TM_2008_262_a3
ER  - 
%0 Journal Article
%A A. E. Barabanov
%T Minimax Control for Nonstationary Linear Operator Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 32-49
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a3/
%G ru
%F TM_2008_262_a3
A. E. Barabanov. Minimax Control for Nonstationary Linear Operator Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 32-49. http://geodesic.mathdoc.fr/item/TM_2008_262_a3/

[1] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A., “State-space solutions to standard $H_2$ and $H_\infty$ control problems”, IEEE Trans. Autom. Control., 34:8 (1989), 831–847 | DOI | MR | Zbl

[2] Francis B. A., A cource in $H_\infty$ control theory, Lect. Notes Control and Infom. Sci., 88, Springer, New York, 1987 | MR | Zbl

[3] Barabanov A. E., “Invariantnost i polinomialnyi sintez strategii v lineino-kvadratichnoi igre”, Avtomatika i telemekhanika, 2006, no. 10, 20–46 | MR | Zbl

[4] Kwakernaak H., “The polynomial approach to $H_\infty$-optimal regulation”, $H_\infty$-control theory, Lect. Notes Math., 1496, eds. C. Foias, B. Francis, J. W. Helton, H. Kwakernaak, J. B. Pearson, Springer, Berlin, 1990, 141–221 | MR

[5] Willems J. C., “Paradigms and puzzles in the theory of dynamical systems”, IEEE Trans. Autom. Control., 36:3 (1991), 259–294 | DOI | MR | Zbl

[6] Matveev A. S., Yakubovich V. A., Abstraktnaya teoriya optimalnogo upravleniya, Izd-vo S.-Pb. un-ta, S.-Peterburg, 1994 | MR | Zbl

[7] Barabanov A. E., “Maximin control of delayed systems”, Tr. In-ta matematiki NAN Belarusi (Minsk), 12:2 (2004), 26–32

[8] Barabanov A. E., “Solution of the nonstationary maximin LQ control problem”, Analytic methods of analysis and differential equations, AMADE 2003, eds. A. A. Kilbas, S. V. Rogosin, Cambridge Sci. Publ., Cambridge, 2006, 1–14 | MR | Zbl

[9] Barabanov A. E., Pervozvanskii A. A., “Optimizatsiya po ravnomerno-chastotnym pokazatelyam (H-teoriya)”, Avtomatika i telemekhanika, 1992, no. 9, 3–32 | MR | Zbl

[10] Fomin V. N., Fradkov A. L., Yakubovich V. A., Adaptivnoe upravlenie dinamicheskimi ob'ektami, Nauka, M., 1981 | MR