Minimax Control for Nonstationary Linear Operator Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 32-49

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution to the minimax linear–quadratic problem of control of an operator system on a semi-infinite time interval is presented. The solution is based on the abstract maximum principle, Willems' behavioral approach, the direct method of basic operators, and a small gain theorem.
@article{TM_2008_262_a3,
     author = {A. E. Barabanov},
     title = {Minimax {Control} for {Nonstationary} {Linear} {Operator} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {32--49},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a3/}
}
TY  - JOUR
AU  - A. E. Barabanov
TI  - Minimax Control for Nonstationary Linear Operator Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 32
EP  - 49
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a3/
LA  - ru
ID  - TM_2008_262_a3
ER  - 
%0 Journal Article
%A A. E. Barabanov
%T Minimax Control for Nonstationary Linear Operator Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 32-49
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a3/
%G ru
%F TM_2008_262_a3
A. E. Barabanov. Minimax Control for Nonstationary Linear Operator Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 32-49. http://geodesic.mathdoc.fr/item/TM_2008_262_a3/